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Abstract

This project is an investigation into the field of Machine Learning and Multi-Agent
Systems. It aims at trying to learn the behaviour of an autonomous agent. The
main idea is to assume that the movements of an agent can be described as a set of
rules, in order to apply the Learning Classifier System paradigm, an extension of the
Genetic Algorithms in Evolutionary Computation.

As a case study, the behaviour of a simulated duck has been transformed into a
set of rules, and an object-oriented simulator with a learning system ”plugged in”
was built in Java. This thesis describes this experimentally-oriented project.

3





Contents

Abstract 3

Table of Contents 7

Acknowledgements 9

1 Introduction 11
1.1 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 The Robot Sheepdog Project . . . . . . . . . . . . . . . . . . 13
1.2.2 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . 14

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Problem and Context 17
2.1 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 The Robocup competition . . . . . . . . . . . . . . . . . . . . 17
2.1.2 The Behaviour-Based approach . . . . . . . . . . . . . . . . . 18
2.1.3 The Animat Problem . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 The Robot Sheepdog Project . . . . . . . . . . . . . . . . . . 20

2.2 Our problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Why the RSP problem ? . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Scope of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Methodology 27
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 An extendable framework . . . . . . . . . . . . . . . . . . . . 27
3.1.3 An interactive approach . . . . . . . . . . . . . . . . . . . . . 28

5



CONTENTS Contents

3.2 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Object-Oriented Programming . . . . . . . . . . . . . . . . . . 29
3.2.2 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Use of Design Patterns . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Further specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Overview of the system . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Design of the simulation model . . . . . . . . . . . . . . . . . 32

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The Learning Classifier System 35
4.1 Overview of the standard LCS . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The Zeroth-Level Classifier System . . . . . . . . . . . . . . . . . . . 37
4.3 An adaptation of the ZCS . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Implementation 45
5.1 Use of Java and Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Overview of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Simulator and Learning System . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 ClassifierSet and Classifier . . . . . . . . . . . . . . . . . . . . 51
5.3.4 Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.5 Utility classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 The Graphical Interface . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.1 Implementation of the GUI . . . . . . . . . . . . . . . . . . . 54
5.4.2 GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Interaction with the User . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Results and Discussion 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6



Contents CONTENTS

6.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion 77
7.1 Overview of the Project . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 A Last Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A More procedures for our LCS 79
A.1 Generate match set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Generate action set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3 Updating the strengths . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Instructions to test the program 85

C More class diagrams 87

D Parameters 91

E Outputs and screenshots 93

List of Procedures 97

Bibliography 98

7





Acknowledgements

I would like to thank Dr Stephen Cameron, my thesis supervisor, for letting me
choosing an interesting and challenging project. I am grateful to Dr Jeff Sanders,
my college supervisor, for his advices and suggestions.

I would also like to thank the Institut d’Informatique d’Entreprise, my French
Engineering School, for giving me the opportunity to follow this Master of Science
in the University of Oxford.

Many thanks to all my friends, who were present when I needed help, either
physically or gmail ly; and to my family for their patience and support.
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Chapter 1

Introduction

The two main topics of this dissertation are Machine Learning and Multi-Agent
Systems. We first give a brief introduction to these topics. Then we present the two
main sources of inspiration for this MSc Project, the Robot Sheepdog Project and
the field of Evolutionary Computation.

At the end of the chapter, an outline of the dissertation is given.

1.1 Topics

1.1.1 Machine Learning

Machine Learning is a an area of Artificial Intelligence which aims to develop tech-
niques allowing computers to ”learn”. According to the Oxford Dictionary, learning
is:

”gaining knowledge or skill by studying, from experience, from being taught.”

Thus Machine Learning is interested in finding possible methods to make computers
using experience to act more rationally than if they didn’t have any knowledge of
the past. Acting rationally is acting in order to achieve the best outcome or the best
expected outcome, if there is uncertainty.

In order to improve the performance of a system from experience, one might use
several types of algorithms; the field of Machine Learning usually distinguishes three
types (described, for example, in [Russell and Norvig, 1995]):

• supervised learning involves learning a function from a set of examples with
inputs and outputs given. At each step, a ”teacher” can tell the system whether
the output it has chosen is correct or not. A typical example of supervised
learning is a system trying to recognize hand-written numbers: a human can
almost always tell if the guess of the system is good or not.

• unsupervised learning involves learning patterns in the input, without any
information about the output. The system tries to learn which possible inputs
can exist, from a set of examples. But since it doesn’t know what is a ”good”
or a ”correct” output, a purely unsupervised agent cannot learn what to do.

11
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• reinforcement learning is the most general of the three types; it involves
learning from reinforcement (or reward). At each step, the system might not
get an information about whether or not its action was correct; but it sometimes
receives reward or punishement when the state of the environment can be seen
as good or bad. A typical example of reinforcement learning is a system trying
to play chess: since it is very difficult to know whether a simple move of a pawn
is useful, usually no reward is given for this kind of move. However, when the
system manages to win against its opponent, a reward can be given. If the
system looses, it can be punished.

In this project we developed a supervised learning system, although the frame-
work we created can be easily adapted to a reinforcement learning system.

1.1.2 Multi-Agent Systems

In Computer Science, a Multi-Agent System is a system composed of several agents
capable of mutual interaction. The agents can be autonomous (i.e. whose decisions
are not controlled by another entity) or not; although for the system to be called
Multi-Agent, at least two autonomous entities must interact, each of those having
the possibility to control several sub-entities. The agents can be artificial (robots,
software agents) or natural (human beings, animals).

Multi-Agent systems have become a very active field of research inside Artificial
Intelligence, partly because :

1. the computational power available today allows researchers to simulate complex
multi-agent scenarios which were impossible to be modelled some decades ago;

2. it is more and more believed that complex behaviours and self-organization
can be manifested in a multi-agent system through the interaction of simple
individual strategies, thus allowing the development of interesting complex
applications by building only simple agents.

One shall not forget as well that another important factor of the development
of studies in multi-agent environments is the military interest exhibited by some
countries. Indeed, building teams of autonomous robots appears more reliable (if
one entity is destroyed, the others can continue their job) and cheaper (most of the
time the simple entities are identical, thus reducing production costs) than other
solutions.

Research in Multi-Agent Systems is focused on several topics, among which we
find:

• beliefs, desires, intentions and knowledge (which was the topic of the course
Logic Of Multi-Agent Information Flow),

• cooperation and coordination,

• multi-agent learning,

12
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• distributed problem solving, etc.

Here we are interested in learning in a multi-agent context, with inspiration drawn
from the Robot Sheepdog Project.

1.2 Inspiration

1.2.1 The Robot Sheepdog Project

The Initial Project

The Robot Sheepdog Project (RSP) (1995-1998) was a collaboration between SRI
and the Universities of Bristol, Leeds and Oxford. This multi-disciplinary project
covered robot building, machine vision, behavioural modelling; it was a first in-
vestigation into ”Animal-Interactive Robotics” (AIR), i.e. the application of
autonomous robots to control the behaviour of farmyard animals.

The aim of the project was to demonstrate the ability of a robotic system to
exploit and control an animal’s behaviour to achieve a useful task.

The initial idea was to construct a robot that would be able to replace a sheepdog,
i.e. managing several tasks such as: herding the flock towards a specific goal, isolating
an individual (for a special treatment), bringing back an isolated individual into the
herd, etc.

Since dealing with sheep was thought to be a too big jump in one step, the
RSP team developed a robot herding ducks instead (Figure 1.1c), because ducks are
known to have a behaviour quite close to the behaviour of sheep. Indeed, sheepdogs
are sometimes trained with ducks in the real-world.

Figure 1.1: The RSP Project. From left to right : (a) The robot Rover - (b)
Rover herding the flock (view from the overhead camera) - (c) Rover and the ducks.
Adapted from [Vaughan, 1999].

After having designed the algorithm that could handle a flock of ducks in simu-
lation (using a mathematical model of the ducks’ behaviour), a robot (Figure 1.1a)
was created to implement this algorithm in a real-world situation (Figure 1.1b), to
check the validity of the model.

13
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The RSP now

The Spatial Reasoning research group in the Computing Laboratory is continuing
research with the use of robot ducks and robot sheepdogs, and the extensive use
of simulation. Students projects within the RSP framework include the develop-
ment of new control algorithms to deal with walls and corners (the initial arena
was a circle) in [Kumar, 2001], enhancing the path planning capabilities of the ro-
bot in [Batterink, 2004] or using a neural network for the control of the robot in
[Lurcock, 2001].

Extending the RSP

The RSP team successfully built a system that was capable of herding animals into a
goal position by interacting with their natural behaviour. The model they designed
was therefore proven to be a robust, general flock-control method. However, in the
conclusion of his thesis, Richard Vaughan proposed the following enhancement to
the system :

”While it is a stated requirement of an AIR system that it should not
require manual optimization to work with any specific animal or group,
the ability to self-optimize or adapt during run-time could be a very useful
extension.”

Since the use of animals is far beyond the scope of a Master of Science project, in
this dissertation we will try to find ways to implement a self-optimization technique
in a simulated multi-agent system, using methods and algorithms from the field of
Artificial Intelligence, especially Evolutionary Computation.

1.2.2 Evolutionary Computation

Evolutionary Computation is the field interested in metaheuristic optimization al-
gorithms that are inspired by biological evolution. From the first ideas described
by [Holland, 1975], a lot of research has been done to use these analogies of natural
processes for the design of learning agents.

Genetic Algorithm

Holland proposed in [Holland, 1975] to use the notions of evolution described by
Darwin as a way to create a kind of algorithm which was later called the Genetic
Algorithm. Genetics Algorithms (GAs) are search algorithms based on the mechanics
of natural selection and genetics. They involve describing the possible solutions of
a problem as strings of bits. These strings can then be used as a sort of ”D.N.A.”
and natural evolution processes are used to make the algorithm converge towards a
global optimum.

The standard version of a GA uses a population of individuals describing solu-
tions to the problem in terms of bits (their genotype), and simulates the evolution

14
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of this population through thousands of generations. A new generation is created
from the previous one by selecting the fittest individuals (i.e. the best ones
according to the fitness function, which describes how well the individuals performs
for the optimization problem) and creating offsprings from previous individuals us-
ing genetic techniques such as crossover and mutation on their genotype. The
Genetic Algorithm is expected to find solutions with increasing fitness throughout
the generations; in the same sense that natural evolution is expected to ”produce”
the most adapted individuals in their environment.

Since randomness is introduced in the process (through mutation, crossover, and
selection), this algorithm is only an heuristic, ie. it is not assured that this method
will find an optimum. However, in several cases, GAs have been quite successfully
applied to complex optimization problems like wire routing, scheduling, traveling
salesman problems, etc. (see [Goldberg, 1989] for more details).

Learning Classifier System

Learning Classifier Systems (LCS), also designed by Holland in [Holland, 1986] are
”a kind of rule-based system with general mechanisms for processing rules in parallel,
for adaptive generation of new rules, and for testing the effectiveness of new rules”
[Michalewicz, 1996] .

In a standard Classifier System (CS), the rules have the form :

[Condition] → [Action]

where the condition part is encoded as strings of symbols in {0,1,#} (where # means
”either 0 or 1”) and the action is taken among a set of actions (therefore it can be
encoded in different ways).

As an example (adapted from [Dorigo and Colombetti, 1994]), consider a simple
task for a robot: chasing a light. If the condition describes where the light is (ac-
cording to the sensors), then the action the robot should do is to go towards this
light.

The figure 1.2 shows an example of classifier used in the Alecsys system created
by Dorigo and Colombetti. We can see that, since the light can be in 16 different
positions, there are 16 different rules that completely describe the optimal behaviour
of the agent.

The task of the Learning Classifier System is to find these 16 rules, by evolving its
set of rules (initialized randomly) using a reinforcement process (which provides
reward when the action chosen by the system leads to a ”good” outcome) and a rule
discovery system (a Genetic Algorithm).

Within the Learning Classifier System framework, different extensions of the
initial description by Holland have been proposed, for example the XCS (eXtended
Classifier System, described in details in [Butz and Wilson, 2001]). We will give
more details about the specific LCS we used and the adaptations we made in section
4.

15
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Figure 1.2: A classifier for the Chase behaviour. Adapted from
[Dorigo and Colombetti, 1994].

1.3 Dissertation Outline

Chapter 2: Problem and Context Prior to the choice of the problem, a lot of
relevant literature has been studied, in order to find an interesting problem to
investigate. This section describes part of this literature, and explains in more
details the global research question and the specific problem we have decided
to focus on.

Chapter 3: Methodology In this section we describe the requirements of our sys-
tem, and explain why Object Oriented Programming fits perfectly well to cre-
ate such a system. We give details about how we are going to investigate our
research problem.

Chapter 4: Learning Classifier System We give in this chapter the specific fea-
tures of the Learning Classifier we designed, which is an adaptation of the
Zeroth Level Classifier System.

Chapter 5: Implementation A program of about 5000 lines of code, with an
advanced graphical user interface and an extensive modularity, has been devel-
oped; this chapter explains how we implemented our system using the design
choices described in Chapter 3.

Chapter 6: Results and Discussion Here we give the results we obtained for
different experiments with our system; we detail the successive changes we
made to our system and why we made them.

Chapter 7: Conclusion A final overview of the project is given, and we explain
how our results might be useful for further research.
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Chapter 2

Problem and Context

In this chapter we present a summary of the relevant work in the different areas
of research linked to the problem we chose, and show that the use of a Learning
Classifier System within a Multi-Agent framework is quite unusual, as far as the
author can see.

Then we describe precisely the objectives of this project, and explain why we
think this topic is important.

2.1 Related Problems

We have presented previously the two domains related to this dissertation, Machine
Learning and Multi-Agent Systems. Even if Machine Learning can be considered as
a field in itself, most of the time researchers have a specific problem in mind, and
they try a learning technique to tackle this problem. Below we give several problems
(mostly multi-agent) where learning techniques have been applied.

2.1.1 The Robocup competition

In multi-agent systems, the main project leading most of the research in the field
is the Robocup competition [Kitano et al., 1997], where teams of robots play soccer
against each other. The competition started in 1997 with the following published
goal:

”By the year 2050, develop a team of fully autonomous humanoid
robots that can win against the human world soccer champion team.”1

This a great challenge for robotics and multi-agent systems. However, the most
visible part of the project, competition of soccer played by robots, encouraged more
research on how to build efficient small robots able to deal with a fast-changing
environment. Most of the teams spend their time on vision systems, motors control,
and other practical problems. To tackle this problem, and develop research in the

1From the official Robocup website : http://www.robocup.org
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multi-agent part of the competition, the organisers of the competition created several
different leagues, including one where the robots used (Sony Äıbo) are already well
defined and available on the market, thus avoiding some of the practical problems.
But this league is also dominated by the teams who actually manage to re-program
most of the features of this robot, including the vision system and the driving system.

Figure 2.1: Screenshot of the Robocup Simulation league, a complex multi-agent
environment.

The last league, the simulation league, where programs describing agents com-
pete against other programs, has seen most of the work oriented towards a better
understanding of a multi-agent system. Although learning has been present since
the creation of this league (see for example the use of Genetic Programming in
[Luke et al., 1998]), the focus has been more on cooperation of well-defined simu-
lated agents (one’s own team), rather than learning the behaviour of the opponent
team. When learning is involved, it is most of the time to learn basic behaviours
(controlling the ball, passing the ball) or learning how to combine pre-defined basic
behaviours to form a team strategy (see [Salustowicz et al., 1998] or [Brusey, 2002]
and, for an account of layered learning, [Stone and Veloso, 1998]).

This method (i.e. studying how to combine basic behaviours) is called the
Behaviour-Based approach, which is another framework in the domain of Autonomous
Agents.

2.1.2 The Behaviour-Based approach

This approach aims at decomposing an agent’s behaviour into small behaviours.
These primitive behaviours (for example, the reflex to avoid a wall) are arranged in
different ways (e.g. in layers or in parallel) and the overall behaviour of the system
emerges through the interaction of these primitive behaviours. If we consider each

18
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rule of a Classifier System (Condition → Action) as a primitive behaviour, then one
might see the Classifier System as a Behaviour-Based approach.

Behaviour-Based robotics have been studied intensively by Arkin and Balch (see
for example [Arkin, 1998], [Balch and Arkin, 1998], [Balch, 1998]) but here again
learning techniques have been applied mostly to cooperative behaviours (e.g. forma-
tion control for a multi-robot team).

2.1.3 The Animat Problem

This dissertation could also be linked with the Animat approach [Wilson, 1985;
Wilson, 1987], which aims at designing animats, i.e. simulated animals or real robots
whose rules of behaviour are inspired by those of animals. Animals start with some
hints about their environment at the beginning, and, through a complex process of
learning, they manage to deal with new situations in a multi-agent environment,
using similarities and inferences from their growing knowledge base.

Wilson was the first to link the Learning Classifier System to the Animat problem
in [Wilson, 1987], but the LCS he created (the ”Boole” system) was learning a
simple Boolean function, i.e. a mapping from binary strings of length L to {0,1}.
He chose the Boolean ”multiplexer” function as a good benchmark for testing his
Boole system. The basic function can be defined by thinking of each input string
as having k ”address” bits ai and 2k ”data” bits di, with the string represented by

a0a1...ak−1d0d1...d2k−1

The value of the function is given by the value (0 or 1) of the data bit that is
indexed by the pattern on the address bits. Thus the smallest multiplexer (k = 1)
can be fully described by the following four rules :

0 0 # → 0
0 1 # → 1
1 # 0 → 0
1 # 1 → 1

Here k = 1, so there is only one address bit (the first bit):

• if its value is 0, then the value of the function is the value of the second bit (no
matter what the third bit is, that’s why we have the ”don’t care” symbol #);

• if its value is 1, then the value of the function is the value of the third bit (no
matter what the second bit is).

The function can be written in a disjunctive form : F3 = a0d0 + a0d1.
In Wilson’s experiments, the Boole system managed to learn quite accurately

the rules of a multiplexer where k = 2 (ie. 6 bits for the inputs), by receiving payoff
when its decision was good and using a Genetic Algorithm as a rule discovery system.

One of the most extensive study of a Learning Classifier System with an Animat
is the work done by Dorigo and Colombetti called ”Robot Shaping”. Their book
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[Dorigo and Colombetti, 1998] describes a framework to design small agents able to
learn and perform relatively well for primitive behaviours like avoiding or approaching
an object, escaping from a predator or chasing a prey (cf figure 1.2 page 16), and
combinations of these behaviours.

However, most of this work does not include a multi-agent environment, apart
from a basic Prey/Predator type of environment, where the Agent tries to learn how
to escape from a moving predator, or how to chase a moving prey.

2.1.4 The Robot Sheepdog Project

Although learning was not present in the initial Robot Sheepdog Project (cf section
1.2.1 page 13), the multi-agent problem it provides was considered interesting and
further studies were done. These include the application of Genetic Algorithms to
the RSP problem by an undergraduate student ([Lurcock, 2001]), and an extensive
study by Sigaud and Gérard: [Sigaud and Gérard, 2000; Sigaud and Gérard, 2001a;
Sigaud and Gérard, 2001b].

Figure 2.2: The situation and the tests describing the position of one sheepdog.
Adapted from [Sigaud and Gérard, 2001a].

Sigaud and Gerard considered the case where several sheepdogs are used to herd
the flock of ducks, and wanted to highlight the fact that using different roles for
each sheepdog might be the best way to herd correctly the flock. Therefore, they
implemented a Classifier System where each sheepdog would have a different role,
described by a different set of rules.

An example of behaviours is given in figure 2.3. The condition part of the classifier
is a set of bits which represent:

• some tests describing the current situation of the agent relatively to the position
of the flock and the goal (isAtGoal, isLeftToFlock, isBehindFlock, etc. - cf
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Figure 2.3: Classifiers for different roles for sheepdogs. Adapted from
[Sigaud and Gérard, 2001a].

figure 2.2) ;

• some tests describing the situation of the other sheepdogs (nobodyBehindFlock,
nobodyPushing, etc.) and the status of the flock (isFlockFormed).

Depending on these conditions, the sheepdogs have the choice between 16 different
actions (goToGoalCenter, doNothing, goToPushingPoint, etc.) and the action part
of the classifier is therefore one of these actions.

The learning was done using a special enhancement of the standard Classifier
System, called the Anticipatory Classifier System.

2.2 Our problem

The previous review of relevant literature shows that studies including Learning
within a Multi-Agent system have mostly attempted to find ways to combine basic
behaviours in order to achieve a useful cooperation of several agents. Here we are
interested in describing and learning the behaviours of external agents, i.e. agents
whose ”mind” and possibilities are unknown to our system. We describe in this
section what is exactly our research problem and why we are interested in it.

2.2.1 Research Question

In the Robot Sheepdog Project, a model (Fig. 2.4) was used to describe the flock
behaviour, and the system was built using this model in simulation. Thus, the system
has been developed under the assumption that the model is a good representation
of the duck behaviour.
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Figure 2.4: Flock model. Key: gain parameters K1→4; repulsion bias parameter L (ensures

repulsion > attraction at small distances, preventing collisions); duck position D, other

duck Dn; Robot position R; Nearest point on wall W ; algorithm terms (1 → 4) and

resultant ~d (where â is the unit vector of ~a). Adapted from [Vaughan, 1999].

This dissertation aims at finding ways to develop a system that would not know
in advance this model. The system we want to build would have some clues about
the generic behaviour of the agents, but no particular model in mind. Thus, only
observation of the reactions of the external agents could allow the system to learn
their internal model.

As an example, consider the model in Fig. 2.4 which describes the duck behaviour

used in the RSP project. According to this model which gives the movement vector
→

d
of each duck, ducks react to the environment with respect (roughly) to these ”rules”:

(1) Ducks are attracted to each other, aggregating the flock;

(2) Ducks are repelled from each other, preventing collisions and maintaining inter-
ducks spacing;

(3) Ducks are repelled from obstacles (walls), preventing collisions;

(4) Ducks are repelled from the robot, modelling the aversive response of the ducks
to the robot.
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We can see here four different rules, and some parameters K1, K2, K3 and K4

describe to what extent each rule affect the overall behaviour of the duck. One can
easily imagine other rules: attraction to food, attraction to the leader of the group
(if there is one), etc.

The question we want to focus on is the following : could a system, through
experiments, build a model of the behaviour of unknown agents, in order
to interact successfully with them later? Is it possible to build a model of
the external agents’ behaviour, using just observations (and prior basic knowledge
about animal behaviour)?

Depending on what they know from the environment, and what they know about
other agents (and possibly other agents’ knowledge), the agents take decisions at any
time, which impacts on their environment. The question is therefore : are we able
to find methods to infer (or learn) their ”internal rules” from their actions ?

If a system is able to find these rules during run-time, it could improve its inter-
action with these external agents, having information about how they behave.

The RSP was focused on specific animals, ducks, but here we want to avoid
building a system that would describe only the behaviour of ducks. Moreover, a
(long-term !) goal would be to find a generic system that could be able to deal with
any animal, or even better with any other agent (including machines).

Indeed, even if one might argue that no definition of what is inside the ”mind” of
the animals has been outlined yet, from a computer scientist point of view, we can
still imagine that these animals are ”unknown external agents” and see their internal
state as a ”black box”. Since the internal state of an artificial agent could also be
studied as if it was a ”black box”, we believe that there is no theoretical problem to
try to describe the behaviour of any agent in a discrete way (with rules, algorithms
and specifications).

This is the point of view shared by many researchers trying to develop Animats,
which we have described previously.

2.2.2 Why the RSP problem ?

As we have seen, in a too complex situation like the Robocup simulation league, it
seems that learning can only be applied to solve some particular subtasks, or to
combine different primitive behaviours. Although studies did show some success
training a neural network to learn how to play soccer by imitating a selection of
hand-coded teams (see [McMillan, 2004]), most of the systems didn’t manage to
learn a team strategy from scratch, nor tried to adapt themselves during run-time
to the opponent’s strategy.

Therefore, most of the adaptive multi-agent simulations involve much simpler sit-
uations, namely the Predator/Prey environment. However, this environment might
be seen as too simple, since there are only two kinds of agents, and one reacts only
to the other.

As stated by Sigaud and Gérard in [Sigaud and Gérard, 2000],

”[the Robot Sheepdog environment] appears as a good compromise be-
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tween the too complex Robocup problem and the oversimplified prey-
predator problems.”

Thus we chose to model this environment, but as we will see, since our task is
to learn the behaviour of the ”external agents” (we prefer this name rather than
”ducks” because their behaviour might be modified, and might no longer look like
the behaviour of ducks), we will only keep the basic features of this problem :

• A circular arena, thus simplifying the reaction of the agents to this entity (they
react according to the nearest point on the wall, see Fig. 2.4 page 22).

• A set of agents evolving in that arena, reacting to each other (attracted, re-
pelled).

2.2.3 Motivation

We believe that trying to understand how other agents behave is another interesting
domain in multi-agent systems, that has not yet been studied deeply. So far most of
the studies have concentrated on how pre-defined agents can cooperate; but a study
of how unknown agents behave might be useful for several reasons.

On a practical point of view, learning processes are very important if we are
to create more robust autonomous robots; they should be able to deal with new
situations and new agents they encounter. Furthermore, the number of robots used
in our daily life will probably increase over the next decades, and therefore it seems
important that robots should be able to deal with other machines, especially if they
are not able to communicate with each other (for example, an ”advanced” robot
dealing with basic limited vacuum cleaner robots in the same room).

On a more theoretical point a view, finding ways and algorithms to describe
unknown agents’ behaviour could be a useful step towards a better understanding
of multi-agent systems. If we think of external agents as artificial agents, we know
that their behaviour can be described by an algorithm (with probabilities involved
if we are using randomness at some point), since they are machines. But if we see
their internal state as a ”black box”, then from an external point of view, they might
look like real animals ; therefore our model of these artificial agents might also be
used to deal with animals. Thus such a learning system might then be useful in
real situations like the Robot Sheepdog, where the Robot could self-optimize during
run-time, as it was proposed by R. Vaughan.

We see several other applications for a system that can learn the behaviours of
external agents, such as:

• improving video games (e.g. in a race game, the computer could learn which
shortcuts you are taking, and use your strategy),

• learning the behaviour of guards patrolling, from a satellite view (what they
are doing when something block their way, how often they meet, where).

Of course these are very long-term goals, and we shall give now the specific scope
of this project, keeping this motivation in mind.
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2.3 Scope of the project

2.3.1 Hypotheses

As we have seen for the model of the ducks in the RSP, a first approximation of the
behaviour of external agents is to describe it as a set of rules. Here, we are not
interested in the reasons why these rules exist in the external agent: for a robot,
it could be the programmer’s design choice, whereas for an animal, it could be an
instinct2. But we decide for this project to assume that a set of rules is a good
approximation to describe an agent behaviour.

Furthermore, we assume that the agent obeys to a set of rules which does not
change over time. Of course, this assumption is quite strong, since it implies that
the agent’s ”mind” does not evolve over time, nor learn any new rules.

But as we want to try to use techniques outlined in the courses Intelligent Systems
I & II, especially reinforcement learning and supervised learning, we prefer to
fix the set of rules and create a learning system whose aim is to find this set of rules.

Therefore we will describe our external agents’ behaviour as a set of rules, each
of them explaining part of the movement vector of the agent for a given time step
t. The overall behaviour will be described by the sum of the vectors ”activated” at
each time step.

In that respect, we can describe the multi-agent system we chose to study as
set of simple reflex agents (cf. 2.5, with the terminology used in the Intelligent
Systems I course and Russell and Norvig in their book ([Russell and Norvig, 1995]).

Agent

E
n

viro
n

m
en

t

Sensors

What the world
is like now

What action I
should do nowCondition−action rules

Actuators

Figure 2.5: Simple Reflex Agent. Figure from [Russell and Norvig, 1995].

Indeed we assume that the behaviour of the agents depends only, at each time
step, on the current environment, i.e. on the position of the other entities, but not
on information from the situation in the previous time steps. This type of behaviour
is called a stimulus-response behaviour, as opposed to a dynamic behaviour, which
requires some kind of internal state (eg. past experience).

2However, this level of abstraction describing an animal’s reactions only based on several instincts
might appear quite insufficient for the reader interested in animal behaviour and philosophy of mind:
we still don’t know why these instincts exist !
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Finally, even if the final aim would be to build autonomous agents able to deal
with these external agents (like the Robot Sheepdog in the RSP), we will focus here
only on how to learn the behaviour of external agents. We hope that once
these behaviours have been described, they could be used later by an autonomous
system that would interact with them, for example.

2.3.2 Objectives

Since we decided to use a set of rules as a description of an agent’s behaviour, we
have chosen the Learning Classifier Systems framework, as it is a rule-based
system, for our Learning System. Although before starting this project we didn’t
know how well this system could perform in our context comparatively to other
learning techniques, it was decided to focus only on this Machine Learning technique
mostly because an extensive comparative study of several techniques would not have
been possible due to time limitations.

Therefore the objectives of this project are :

1. Building a system that allows us to use a Learning Classifier System in
a Multi-Agent Environment, where the aim is to learn which internal rules
make the agents moving. This system should be extendable, so that different
behaviours and different Classifier Systems can be used, and interactive, so
that different tests can be made easily.

2. Defining ways to describe the behaviours of external agents in a form
that can be applied to a Learning Classifier System. As a case study, we shall
try to define the behaviours of the ducks in the Robot Sheepdog Project.

3. Experimenting the Learning Classifier System to try to learn the behaviours
previously defined in 2 as if they were unknown to the system, just by observing
the actions of these agents.

2.4 Summary

After a literature review, we have chosen to try the Learning Classifier System tech-
nique within a Multi-Agent problem for an interesting task: trying to discover which
”rules” could describe the behaviour of external agents.

The project aims at developing a system where several behaviours can be tried
and learned; this system should have the possibility to be extended easily in order
to try different Learning Classifier Systems for different behaviours.

26



Chapter 3

Methodology

In this chapter we describe the requirements our system shall satisfy in order to meet
our objectives, and we explain which methods are going to be used to fulfil these
requirements.

3.1 Requirements

We have three important objectives: (1) building a system, (2) defining descriptions
of the behaviours of the agent that could fit into a Learning Classifier System, (3)
experimenting with our descriptions and testing our LCS. We give now more details
about these objectives.

3.1.1 Overview

In order to meet the first objective, we need to develop a tool that allows us to
simulate the behaviours of several agents interacting in an arena, and this tool should
have the ability to learn the behaviour of each agent independently.

Thus we shall construct a program that can be both a simulator of behaviours,
and a learning system at the same time, since our objective is to learn during run-
time, that is to say, to learn the behaviours of the agents while they are moving
inside the arena.

3.1.2 An extendable framework

From the second objective, we can infer that our system must be extendable, in (at
least) two directions.

Changing the Behaviour of an Agent

Several behaviours need to be tested, and the simulator should show us how the
movements of the agents are modified when we modify their behaviour. The system
we are going to build should be able to deal with new behaviours as follows:
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• since the behaviour of an agent is (by assumption) considered to be a set of
rules, these rules should be easily mutable to see the impact on the reactions of
the agent and the other agents during the simulation. As long as we are only
changing rules that are based on the same definitions (ie., for a LCS rule, same
number of bits and same meaning for each bit), this shall not require to start
again the simulator. Therefore a Graphical User Interface (GUI) seems a good
solution to allow these changes of rules.

• if we are to change the behaviour in a more complex way (eg. changing the
meaning of the rules), this might require recompilation of the program; how-
ever, extending the program should be easy and quite straightforward.

For example, consider the Classifier System used by the Animat chasing a light
described on page 16, it should be made possible to change the set of rules so that
the Animat is avoiding the light (this would just require to change the [Action] part
of the rules). This change would be made in order to see how the learning system is
working for that kind of behaviour.

But if we want the Animat to react to another stimulus as well, eg. some food,
then the structure of the rules are modified (the [Condition] part of the rules must
be expanded): this might require to change the source code to implement this new
”environment”. However, the program should be written in such a way that adding
a new environment is easy and does not affect all the source code. This requirement
ensures that the framework can be used for several environments quite easily, and
could be adapted for different experiments.

Changing the Learning Classifier System

It should also be possible to change as well the Learning Classifier System used, in
order to try different versions or enhancements that have been proposed by the LCS
community since the standard version proposed by Holland.

3.1.3 An interactive approach

Finally, for the third objective (experimentations), we need to build a system which
is easy to use (with a useful graphical interface) and that provides some idea of the
performance of the system for each test. A first obvious way to see how the test
is going is to watch the simulation, and the learning system if possible. But some
precise data should be recorded as well so that we can plot the results and evaluate
the performance of the system.

3.2 Design Choices

From these requirements, several design choices were made, and we describe them
below.
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3.2.1 Object-Oriented Programming

It appeared quite soon that Object-Oriented Programming (described in the courses
Object-Oriented Programming I & II ) would be a relevant paradigm to use to build
our system, since it brings very useful features: abstraction, modularity, and reusabil-
ity.

First, thanks to abstraction, we can elaborate some generic rules about how
to define an Agent, and by using abstract classes and inheritance we can design
several agents that could fit into our system. This abstraction process could also be
applied for the Learning System, allowing us to design a unified Classifier System
with different implementations depending on the specific enhancements we want to
use and test.

The modularity feature would be useful, for example, to separate the simulation
and the display, which is one of the requirements we have.

The reusability feature is a requirement for our project, and we should ensure
that we design our system in such a way that further tests and research can be made
in different environments. Object-Oriented Programming usually makes it easier to
have reusable programs.

Finally, the multi-agent problem is well suited for an Object-Oriented approach:
every agent can be represented as an object, and several agents can be handled easily,
by creating several instances of a super class Agent.

3.2.2 Graphical User Interface

Since most of this research is going to be done with a ”trial and error” approach (cf
section 3.4 below), a useful Graphical User Interface (GUI) should be provided, in
order to modify parameters and do extensive tests. Indeed, the use of an heuristic (a
Genetic Algorithm) implies that it’s not possible to find a ”solution” by calculation,
and an empirical study (including tuning the parameters) has to be carried out.

Most of the recent Object-Oriented programming languages have extensive li-
braries to create a GUI, for example GTK for the language C++, Swing and Awt
for Java, etc.

3.2.3 Use of Design Patterns

Within the Object-Oriented paradigm, there are several Design Patterns that al-
ready seem relevant for our system. Design Patterns are described as: ”reusable
solutions to recurring problems that we encounter during software development”
[Grand, 1998]. Some of them have been described in the courses Object-Oriented Pro-
gramming I & II, and we will use as well the two well-known books [Gamma et al., 1994;
Grand, 1998] as references.

The first Design Pattern we can see is the Template pattern, sometimes called
the Template Method ([Gamma et al., 1994]). This pattern allows the program-
mer to design only the skeleton of an algorithm in an abstract class, and let the
subclasses implement some inner parts of the algorithm, by implementing abstract
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methods called in the main algorithm. We shall see at least two interesting applica-
tions of this pattern in our system:

• for the Learning Classifier System, where some parts of the algorithm (eg. how
to do the crossover, the selection, etc.) could be implemented in different ways,
but within the same main procedure.

• for the definition of the meaning of the rules. They all share some common
features (they have an [Action] part, a [Condition] part, they are coded as bits
of strings), but their meaning could be different depending on the behaviour
we want to model.

Another useful pattern might be the Observer pattern, which defines the relation
between the simulation (data model), and the GUI (observer) and ensures that data
model and observer remain separated while still allowing interactions. However the
original pattern allows several displays for a unique data model, whereas here we
want to build only one window showing the simulation and receiving inputs from the
user; therefore we might have to adapt the original pattern.

3.3 Further specifications

3.3.1 Overview of the system

It was decided to use a state machine for the simulator: at each time step, the
simulator calculates the new position of each agent, depending on the positions of
the other agents and the internal rules this agent has.

In order to have a more precise view of how the system is expected to work, we
give in Procedure 1 an outline of the main procedure.

This procedure ”contains” a lot of the requirements described previously, and we
shall now explain this sketch of the main procedure.

lines 3,16: Our system should allow the user to choose whether or not a graphical
view of the simulation is displayed. Thus the simulation must be able to run
even if the graphical interface is not displayed. Furthermore, if simulation and
graphics are separated, some set tests could be run more efficiently without the
display.

line 6: Customization of the behaviours should be possible for each agent, if the
GUI has been launched.

lines 9 to 21: The system should work as a state machine, updating the positions
(l. 19) of each agent at each time step (once for each repeat loop).

line 12: If we want only to test the behaviours within the simulator, it should be
possible to switch off the learning system. If the learning system is switched
on, it works also as a state machine: at each time step, it tries to ”guess” where
the agent is going to be at the next time step, by using the set of rules it has
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Procedure 1 Sketch of the system

1: Initialize the Arena
2: Create the first m Agents with a default behaviour
3: if isGUIused then
4: Start window
5: (Add more agents am+1, am+2, ..., am+n to the arena)
6: Customize the real behaviours of each agent ai

7: Paint the Arena and the Agents
8: end if
9: repeat

10: for each agent ai do
11: Define new position ~P t+1

i from(~P t
i ,other entities ej 6=i,behaviourreal)

12: if isLearningActive then

13: Guess new position ~P ′
t+1

i from(~P t
i ,ej 6=i,behaviourexpected)

14: Compare ~P t+1
i and ~P ′

t+1

i ⇒Update behaviourexpected {see chapter 4}
15: end if
16: if isGUIused then
17: Repaint the agent
18: end if
19: ~P t

i ←
~P t+1

i

20: Record some data in a log file {to measure the performance of the system}
21: end for
22: until termination criteria are not met

constructed so far. After that, the ”guess” is compared to the real movement
of the agent, and the learning system should evolve to take into account the
result of the comparison.

line 20: In order to measure the performance of a given LCS with some given pa-
rameters, the system should record some data useful to compare different sets
of test.

line 22: The termination criteria might be a given number of time steps, the user
stopping the simulation, a condition telling that the system has become stable,
etc.

This is only a broad view of the system, at this point we don’t have any precise
requirement on how the learning system should work (procedures Guess new po-
sition, Compare, Update), nor how we measure the performance of the system.
We will give more details about the Learning Classifier System in next chapter.

However, the method we are going to use for Define new position can be
described already, since it was decided to re-use part of the work of Richard Vaughan.
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3.3.2 Design of the simulation model

The model used by R. Vaughan (we reproduce the figure here for convenience) de-
termines the positions of the agents by an adapted potential field algorithm.
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Figure 3.1: Flock model. Key: gain parameters K1→4; repulsion bias parameter L (ensures

repulsion > attraction at small distances, preventing collisions); duck position D, other

duck Dn; Robot position R; Nearest point on wall W ; algorithm terms (1 → 4) and

resultant ~d (where â is the unit vector of ~a). Adapted from [Vaughan, 1999].

This method uses an analogue of a charged particle in an electrical field. The
motion of the particle is determined by its current position and the different forces
acting on it. However, in the simplified model used by R. Vaughan, the assumption
is that these forces are in fact directly modelling a movement vector. Thus we don’t
model the effect of the mass here, and we don’t use forces to determine acceleration.
We simplify by saying that every other entity ej 6=i (including walls) around the Agent
ai can affect its movement, and this is represented by a vector ~vej⇒ai

which determines

part of the movement vector ~M t
i of the Agent calculated at a given time t.

~M t
i

def
=

[∑

j 6=i

~vej⇒ai
(ej, behaviouri, ~P t

i )

]
+ 0.1× ~M t−1

i (3.1)

~P t+1
i

def
= ~P t

i + ~M t
i (3.2)

In our model (equations 3.1 and 3.2), this vector ~vej⇒ai
depends on the behaviour
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behaviouri of the Agent ai, which encodes the reaction of the Agent ai to this entity
ej , ie.:

• whether the Agent is attracted or repelled by the other entity (this corresponds
to the sign of the term in Vaughan’s model, multiplied by the unit vector
between the Agent position and the position of the other entity; see fig. 3.1);

• how strong is the response of the Agent to this entity (this corresponds to the
constants K1, K2, K3, K4 in Vaughan’s model);

• etc.

With these informations (contained in the behaviour of the Agent, in a form that still
remains to be specified), the vector ~vej⇒ai

can be calculated, scaling it according to
the inverse square of the distance between the Agent and the other entity (previous
models reviewed by Vaughan et al. have showed that a real animal would indeed
have such a nonlinear response).

Finally, in order to obtain the movement vector ~M t
i of the Agent, we add all the

vectors representing all the influences of the other entities (some might not affect its
movement, this depends on its behaviour), and add to this sum 10 % of the previous

movement vector ~M t−1
i (in order to roughly model the inertia of the Agent). This

gives us the movement vector, that we apply to the current position ~P t
i in order to

know the new position ~P t+1
i at the next time step t + 1 (equation 3.2).

3.4 Method

3.4.1 Overview

We have chosen to use Evolutionary Computation, and more specifically Learning
Classifier Systems, to learn the behaviours of the external agents. Although some
have managed to put mathematical foundations to explain the success of Genetic Al-
gorithms (work by [Holland, 1975] and [Goldberg, 1989]), Evolutionary Computation
is still a field where most of the studies are empirical.

Indeed, it is necessary in Evolutionary Computation to spend a lot of time tuning
the different parameters, and making some little changes to the algorithm so that it
performs better.

Therefore we want to emphasise that our study should use a ”trial and error”
approach, that can be outlined as follows:

1. Find generic rules to put into the ”brain” of the agents in order to describe
their behaviour.

2. Once the meaning of the rules is fixed, describe the agents’ behaviours as a set
of such rules.

3. Launch the system, expecting it to learn this set of rules as if they were
unknown, only by observing their movements.
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4. If the results are bad (learning doesn’t succeed), try to simplify the set of rules,
or the meaning of the rules (eventually change the features of the Learning
System) and start again at (1).

5. If the results seem good, increase the complexity of the agents’ behaviour and
start again at (3).

It seems necessary to have an idea of how to measure the performance of the
system, in order to be able to say ”the results are good/bad”.

3.4.2 Performance

In this project, the assumption is that the system doesn’t know what is inside the
”mind” of the agents, and tries to guess their movements from past experience, by
inferring from their movements a set of rules that could describe their behaviour.

A first problem appears here: since the final aim is to use our system with
unknown agents, how are we going to assess that the system has ”correctly guessed”
their internal rules ?

Of course, in this project we are using a simulation, and we choose what is inside
the ”minds” of the simulated agents, so an obvious way to measure the performance
would be to compare the chosen set of rules with the expected one (ie. the one that
the system inferred from its observations). But this is not an appealing solution, since
it involves knowing something we assume unknown. However, this solution might be
useful for the tests, in order to have some idea of the performance of the system.

Another solution was then designed, which doesn’t imply breaking our initial
assumption. The idea is to use the only thing we can observe, the actual movement
of the agent, to assess the performance of the system. At each time step, the system
makes a guess about the next position of the agent, and this guess is immediately
confirmed or denied by the actual movement of the agent. We can then compare
the actual movement vector and the expected movement vector, and calculate
for example the distance between the actual position and the expected position.
If we add these distances over all the time steps of the experiment, we obtain an
”objective” measure for the performance: the closer to the real positions the guesses
are, the better the system performs.

3.5 Summary

Several general requirements for the system have been outlined. Some of them have
led to design choices and further specifications. In particular, the need for abstraction
and reusability, and the multi-agent context, make the Object-Oriented paradigm a
good choice for building our system.

A sketch of the system has been given, and we have explained our approach to
the problem and how we are going to assess our results. We need to describe now in
further details the actual Learning Classifier System we have used.
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Chapter 4

The Learning Classifier System

In this chapter we detail the Learning Classifier System framework, and explain
the specific features of our LCS, which is an adaptation of Wilson’s Zeroth Level
Classifier [Wilson, 1994].

4.1 Overview of the standard LCS

A Learning Classifier System can be described as:

”a Machine Learning System that learns syntactically simple string
rules (if-then rules) to guide its performance in an arbitrary environ-
ment.” [Goldberg, 1989]

We have explained roughly what the purpose of an LCS is in Chapter 1 (page 15),
and we need now to detail the mechanisms.

A LCS usually consists of three main components (cf Figure 4.1):

1. A rule and message system

2. An apportionment of credit system

3. A rule discovery system

The rule and message system is a production system where the rules are
generally of the form [Condition] → [Action], which means the action may be
taken (the rule is activated) when the condition is satisfied.

The LCS has a pool of rules (generated randomly at the beginning), and a
strength is associated with each rule, representing their ability to get good rewards
from the environment.

At each time step, some information comes to the detectors from the environment,
and goes to the message list. Depending on the messages in the message list, some
rules are activated (if one message in the system satisfies their [Condition] part).
A selection among the activated rules is made, and the selected rules deliver their
message (their [Action] part) back to the message list. In the standard form of the
LCS, the message list can therefore contain information from the detectors mixed
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Figure 4.1: The Architecture of a standard Learning Classifier System. Adapted
from [Geyer-Schulz, 1995].

with messages from the rules. This allows the system to create ”chains of rules”: a
rule sends a message to the message list, activating another rule on the next time
step, which in turn sends a message to the message list, and so on.

At the end of the selection step, if some messages are meaningful for the effectors,
an action is carried out in the environment. In a reinforcement learning problem,
this action might not always get a payoff (reward) from the environment; but when
the action is judged to have a positive impact on the environment, a reward is given
to the LCS. Thanks to this reward, the LCS will update the strength of the rules,
using its apportionment of credit system . But since the action chosen by the
LCS might be the result of the sequential activation of several rules (as explained
above), it needs to give a reward to all the rules which belonged to the ”chain” which
lead to the useful action. This can be done using several techniques, the original one
being Holland’s bucket brigade (see [Goldberg, 1989] for further details).

Finally the third component, the rule discovery system ensures that new
rules are created, in order to explore the space of the possible different rules. Most
of the time, the rule discovery system is a Genetic Algorithm, which combines the
”best” rules (with the highest strengths) and modifies them in order to obtain new
offsprings, with the hope that recombination of useful rules creates rules which are
even more useful (this is the basic principle of natural evolution and selection).

Thus, we obtain a system able to explore the search space (thanks to the Genetic
Algorithm which creates new rules) and exploit the possible solutions (by testing
the classifiers and updating their strengths).
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A first simplification of this system is to remove the message list: rules give
messages directly to the effectors. This is the simplification chosen by Wilson for his
Zeroth-Level Classifier System (ZCS, [Wilson, 1994]) that we describe now.

4.2 The Zeroth-Level Classifier System

In order to make the explanations more understandable, we consider the following
example: a robot trying to reproduce the behaviour of a dog. The robot is moving
in its environment and can encounter four different entities: a toy (big and red), an
apple (small and red), a cat (big and grey) and a mouse (small and grey).

In our example, the robot has:

• two different sensors, which give information about the color (we suppose here
that its vision system is bad, and can only detect whether something is red or
not) and the size (small or big) of the entity;

• a number of effectors, which allow four different actions: don’t touch, destroy
(or kill for a living entity), play and eat (might be in fact collect for a robot!).

The aim of the robot is to learn how to behave like a dog, ie. to correctly react to
the four different entities in the following way: don’t touch the cat, kill the mouse,
play with the toy and eat the apple.

Now, in order to use a LCS, we define a Template for the rules, which describes
the meaning of the bits in the [Condition] and in the [Action] part. For the Condition
part, we use two bits: the first one giving information from the first sensor (ie. 1
when it’s red, 0 otherwise), and the second one giving information from the second
sensor (ie. 1 when it’s big, 0 when it’s small). For the Action part, since there are
four actions possible, we also use two bits: 00 for don’t touch , 01 for destroy, 10 for
play and 11 for eat.

Therefore the behaviour the robot should learn can be fully described by the four
rules given in table 4.1.

Big
?

R
ed

?

Cat 1 0 → 0 0 Don’t touch!
Mouse 0 0 → 0 1 Destroy (kill)

Toy 1 1 → 1 0 Play
Apple 0 1 → 1 1 Eat

CONDITION ACTION

Table 4.1: Behaviour of a simulated Dog.

The process used by the ZCS to learn these rules can be described by the Fig-
ure 4.2.

In the ZCS, the Rule and Message system is reduced to the population of
rules inside the system, together with a selection process.
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Figure 4.2: A Zeroth-Level Classifier System. Adapted from [Wilson, 1994].

Suppose our robot meets an apple on its way. The detectors send the information
01 (small and red).

From this information, the selection process will first create the Match Set
[M ] from the population [P ]. The Match Set is the set of classifiers which have a
[Condition] part satisfied by the information given by the detectors. For the example
of the apple, all the classifiers having 01 as a condition will be selected, but also
the more generic classifiers containing a ”don’t care” (#) symbol. For example, a
classifier whose [Condition] is #1 will also be selected, since it means ”a red object
(no matter how big)”.

From this Match Set, a particular action a (in the figure, 11) is selected with
probability equal to the sum of the strengths of the classifiers in [M ] which advocate
that action, divided by the sum of the strengths of the classifiers in [M]. Thus a
”good” action (associated with rules having a high strength) will be more likely to
be selected. With this action, an Action Set [A] is created, by choosing all the
classifiers in [M ] which advocated a.

Finally, this action is sent to the effectors, and the corresponding action is carried
out in the environment.

Then, if a reward is given by the environment, the Reinforcement system
updates the strengths of the rules by distributing the reward among the classifiers
in [A]−1 (ie. the action set of the previous time step) in order to obtain an implicit
bucket brigade. We don’t detail this process since we are not going to use it (see
Specific features below for the process we used).

Every n time steps (n is to be chosen), the Genetic Algorithm (GA) is used as
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a rule discovery system. Two rules are randomly chosen among [A], and a
crossover might be applied on their [Condition] part to obtain two new offsprings
(see fig. 4.3); then a mutation might change some of the bits of the offsprings (see
fig. 4.4).

Figure 4.3: Crossover. Notice that the crossover is applied only to the [Condition]
part.

Figure 4.4: Mutation. Notice that actions can change and that ”#” can appear.

Then the two offsprings are inserted in the population, and in order to stay below
the maximum size of the population, some classifiers might be deleted (the weakest
ones having more chances to be deleted).

The last feature of the ZCS to explain is covering. When the Match Set [M ] is
created, if there are not enough different actions in [M ] (”enough” is to be chosen),
then the system generates new classifiers for the Match Set (ie. whose [Condition] is
satisfied by the information from the detectors) with a random action among those
not already in the Match Set.

The idea is that over the time, the classifiers leading to the maximum payoff from
the environment will become stronger, and the system will select them more often,
thus trying to maximize the reward it can receive.

In our example, if the action chosen for the apple is ”eat !”, a reward will be given
to the robot, and it will increase the strengths of the correct rules, thus ”recording”
in its population of rules this important instinct for a dog: whenever you see an
apple, eat it!

It is interesting to notice that Classifiers Systems can also contains generic rules
which can be activated for a new situation. For example, a rule (#0 → 00) which
says ”don’t touch what is not red” might be a good way to get payoff (although not
the maximum payoff) when the robot encounters a cat or a mouse and doesn’t have
yet a specific rule to deal with a situation 10 (cat) or 00 (mouse).
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4.3 An adaptation of the ZCS

For our problem, we need to adapt the ZCS because of two major reasons:

1. Our problem is multi-agent. Thus at each time step, an agent’s detectors should
be activated for each other entity around (in our dog example, the robot does
not react to several stimuli coming at the same time). Indeed, for the duck
model in the RSP, the duck reacts to all the entities around in parallel (its
movement is determined by the position of all the other entities).

2. We do not need a bucket brigade, nor an implicit bucket brigade, because we
do not use reinforcement learning. Indeed, at each time step we are able
to calculate the payoff to give to the system (this is supervised learning),
since we can always compare the expected position of the agent with the real
position of the agent and give a payoff proportional to the distance between
the two positions.

Therefore we have designed new algorithms to address these problems, they are
explained below.

4.3.1 Main Algorithm

We follow for our description the conventions from [Butz and Wilson, 2001], who
have given a very clear description of the XCS, another classifier system developed
by Wilson. In particular:

• functions in Small capitals are procedures which are described later (or in
Appendix A).

• we named the population set [P ], the match set [M ], the action set [A].

• a classifier cl has a [Condition] part cl.C, an [Action] part cl.A and a strength
cl.s.

The following constants should be determined before launching the system:

• GAperiodicity (was n page 38): the periodicity of the use of the Genetic
Algorithm. Typical values are for example every 50 time steps,every 200 time
steps, etc.

• sizeActionSet: the number of classifiers to activate in order to calculate the
response of the agent for one entity.

• maxError: the maximum error between the expected position and the actual
position. If the error is greater than maxError, then no reward is given (see
section 4.3.2).

• β, γ: constants which are used in the Apportionment of Credit System (see
section 4.3.2).
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• minNbActionsForMatchSet: miminum number of different actions to have in
a Match Set; below this number, covering occurs.

• different probabilities (probability for crossover, mutation, for the apparition
of the # symbol in a classifier created by covering, etc.).

We give in procedure 2 the main steps of our ZCS. It details the outline of the
system given in procedure 1 page 31.

Procedure 2 Main Procedure of our ZCS
1: timeSteps ← 0
2: repeat
3: timeSteps ← timeSteps +1
4: for each agent ai do
5: Define new position ~P t+1

i from(~P t
i , aj 6=i, behaviourreal)

6: if isLearningActive then

7: [A]← Guess new position ~P ′
t

i from(~P t
i , aj 6=i, behaviourexpected)

8: r ← Compare ~P t+1
i and ~P ′

t+1

i {reward}
9: Update [A] considering the reward r

10: if (timeSteps % GAperiodicity) = 0 then
11: Run Genetic Algorithm on [A]
12: end if
13: end if
14: ~P t

i ←
~P t+1

i

15: end for
16: until termination criteria are not met

Although we have put a ”for” loop on line 4, it comes only from procedure 1,
and is just here to explain that each agent’s behaviour is learned by a separate ZCS.

One could imagine our system as a little device attached to a duck, for example:
at each time step, it knows the exact coordinates of the duck (eg. thanks to a little
GPS device), and tries to guess where the duck is going to be in the next time
step, without knowing the motivations of the duck. The system detects the entities
around the duck (wall, sheepdog, other ducks, etc.) and makes its guess according
to the pool of rules it ”thinks” might describe the motivations of the duck. Then it
compares its guess to the next position of the duck and updates its rules.

Keeping this analogy, in our system we provide a little ”device” for each agent.
Although they don’t run in parallel1, they are completely separated.

Therefore in the following we consider only how one ZCS works, and in the main
system several ZCS will work in parallel, as sketched by the for loop.

1This would involve dealing with complicated concurrency issues such as: ”how and when should
we get the current position of the other entities, since they are updated continuously?” and was
decided to be beyond the scope of this project.
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4.3.2 Specific features

Generating the ”Action Set”

The procedure Guess new position is the crucial part of our multi-agent system:
it generates the expected movement vector of the agent, by adding all the movement
vectors generated by the [Action] parts of the selected classifiers. It is important to
notice that an Agent is influenced by several entities around him, therefore several
classifiers (which might have different [Action] parts) are selected and added to the
”Action Set”. Thus the name ”Action Set” doesn’t really correspond to the reality
of our system (since it is not a set of classifiers having the same [Action] part) but
we decided to keep the name for convenience.

Procedure 3 Guess new position ~P ′
t

i from(~P t
i , ej 6=i, behaviourexpected [P ]) re-

turns [A]

1: [A]← [ ] {empty action set}

2: ~V ← ~0 {will receive
∑

j 6=i ~vej⇒ai
}

3: for each entity ej around agent ai do
4: dj ← Get definition of ej from TemplateBehaviour
5: [M ]← Generate match set out of [P ] satisfying dj

6: [Ai]← Generate action set from [M ]
7: ~vej⇒ai

← Get vector from [Ai] using TemplateBehaviour

8: ~V ← ~V + ~vej⇒ai

9: [A]← [A] ∪ [Ai]
10: end for
11: ~M t

i ← 0.1× ~M t−1
i + ~V

12: ~P ′
t+1

i ← ~P t
i + ~M t

i

13: return [A]

This algorithm is to be linked to the equation 3.1 page 32 which defines the
movement vector of the Agent. Here, the TemplateBehaviour should be understood
in the same way as the Template for our dog example: it defines the meaning of
the bits for the [Condition] and [Action] part. However, as we explained previously,
the [Action] part is not a physical action but a vector (the meaning of each bit is
defined in the TemplateBehaviour, therefore the procedure Get vector from [Ai]
depends on TemplateBehaviour and will be explained later). The sum of all the
vectors will determine the expected movement vector for the Agent.

Since we have already explained how we generate the Match Set (page 38), we
don’t put its algorithmic definition here (see Appendix A for further details).

It remains to explain how we decided to generate each Action Set for each en-
tity around the Agent. This is done by selecting sizeActionSet classifiers using a
Roulette Wheel (RW) selection with slots of the roulette sized according to the
strength of the classifiers. The idea is to select the ”best” classifiers, while still giv-
ing a chance to the weaker ones, in order to keep diversity in the population (ie. to
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test different solutions). The Roulette Wheel selects a classifier randomly, but the
probability of a classifier to be selected is proportional to its strength.

The full algorithm is given in Appendix A.

Apportionment of credit system

Here we explain how we update the strengths of the rules. The procedure Compare
just returns a reward proportional to the distance (called error) between the expected
position and the actual position. Since the reward must be positive, we give a reward
proportional to (maxError − error) when the error is not too big, 0 otherwise (no
reward). We took the value 10 for maxError and a factor of 200, so the maximum
reward the LCS can get at a given time step is (10− 0)× 200 = 2000.

Procedure 4 Compare ~P t+1
i and ~P ′

t+1

i returns r

1: error ← distance between ~P t+1
i and ~P ′

t+1

i

2: if error < maxError then
3: return (maxError − error) ×200 {to have a stronger impact even with

small errors}
4: else
5: return 0 {no reward, the error is too big}
6: end if

Therefore the rules receive reward only when the position they generated (through
their vectors) is close to the actual position of the agent. When the error is too big,
no reward is given, but then the strengths of the activated rules wouldn’t change.
We would rather prefer that the rules are actually punished. So we decrease their
strengths with the following method adapted from the standard ZCS when the en-
vironment is single-step (ie. when the payoff is known at each time step).

Each activated rule gives a percentage β of its strength to a common bucket2 and
receives back only its share of the reward plus its share of a fraction γ of the bucket,
with γ < 1. Therefore if the rules receive no reward (error too big), they will receive
back only part of their contribution to the bucket, and their strength will decrease.

The full algorithm is given in Appendix A.

4.3.3 Genetic Algorithm

The Genetic Algorithm used is classic.
We don’t specify here how to do a crossover or a mutation; for further details see

figures 4.3 and 4.4, or refer to [Goldberg, 1989].

Once crossover and mutation have been applied, the two offsprings are inserted
in the population to be tested on the next time steps.

2Although we use the name ”bucket” here, the method we describe is very different from Hol-
land’s bucket brigade, fully described in [Goldberg, 1989].
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Procedure 5 Run Genetic Algorithm on [A]

1: cl1, cl2 ← Select classifiers using RW from [A] {see procedure 10 in
Appendix A}

2: cl′1 ← Copy cl1
3: cl′2 ← Copy cl2
4: cl′1.s← cl1.s/2
5: cl′2.s← cl2.s/2
6: cl′1, cl

′
2 ← Apply one point crossover to cl′1 and cl′2

7: Apply mutation to cl′1
8: Apply mutation to cl′2
9: Add classifier cl′1 while maintaining size in [P ] {see Appendix A}

10: Add classifier cl′2 while maintaining size in [P ]

4.4 Summary

The standard Learning Classifier System has been explained. We have introduced
what we call a Template, which defines the meaning of the bits in the Classifiers.
On the other hand, a Behaviour is an arbitrary set of rules whose meaning is given
by the Template. A small example of a possible Template and a possible Behaviour
has been produced, to give an idea of how we are going to describe the behaviour of
the ducks in the RSP model (our second objective).

Finally, we have detailed our Learning Classifier System, which is an adaptation
of Wilson’s ZCS for a single-step environment because we know the reward we can
give to the system at each time step. We also designed our ZCS so that it can work
in a multi-agent environment, with several rules activated to produce one single
movement (which is the combination of all the responses to the other entities around
the Agent).
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Chapter 5

Implementation

In this chapter we describe the main features of our implementation. The program
can be tested by following the instructions given in Appendix B.

5.1 Use of Java and Eclipse

The choice of Java for the Object-Oriented programming language was dicted by
pragmatic reasons: at the beginning of the project it was decided to try to re-use an
open source Java environment called TeamBots for the simulator, as the purpose
of the project was more focused on the Learning System. TeamBots1 was developed
by researchers at the Carnegie Mellon University, especially Tucker Balch, for his
dissertation about multi-robot problems (cf [Balch, 1998] for an account of the work).
However, after some experiments with this platform, it appeared that the program
was too big to be adapted and modified for our project, and that we should start
again ”from scratch”. But it was decided to continue to use Java for convenience.
Java also provides two main features which we considered: (1) it compiles to bytecode
and can therefore be executed on several platforms easily; (2) it is fully integrated
within the Eclipse IDE (Integrated Development Environment). Eclipse has been
used for this project and has proved to be very time-saving, mainly because of:

• its ability to compile the Java code on the fly (called incremental compilation),
showing the errors as annotations in the margin of the source code;

• its refactoring tools (safe rename);

• its code completion tool which gives directly the legal completions of methods,
names, etc.

Finally, Eclipse allows third-party plug-ins, and we have used Omondo’s Eclipse
UML to generate the UML diagrams that we present in this chapter and in Appen-
dix C.

1http://www.teambots.org
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5.2 Overview of the system

The main organization of the system can be described by the diagram in Figure 5.1.

Figure 5.1: The main components of the system.

The system works as follows:

• the Application class (containing the main method) creates a Simulation;

• if the GUI is used, the Application launches the display as well (provided by
G MainWindow) and links the display and the simulation to each other, so that
they can interact;

• the arena and a set of other entities (class Entity) are created and handled by
the Simulation;

• the Simulation, through the method start(), launches a new Thread (with the
inner class Animation) which will run the main procedure already described in
chapter 3 (page 31);

• if the GUI is used, the user can modify the settings of the simulation;

• the simulation can then start by a call to the method run() (if there is a GUI,
the system waits for the user to click on the button ”Start”).

In order to differentiate the classes used for the graphical display, we have prefixed
their name by ”G ” and created two different packages: a package for the simulator
and the learning system (simuLCS), and a sub-package (simuLCS.graphics) for the
components of the GUI.
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5.3 Simulator and Learning System

A quite detailed overview of the class diagram is given in Figure 5.2 page 48. This
diagram summarizes the main features of the most important classes in our system
(GUI classes are not included). We explain briefly this diagram below, and the
following sections explain in more details each important set of classes. We provide
for each of them their main responsibilities, and a more precise UML diagram can
be found in Appendix C.

The class Application creates a Simulation. The Simulation contains a set of ob-
jects from the class Entity and makes them moving with a thread Animation. An
AgentClassifier is a special kind of Entity having a behaviour described as a Classi-
fierSet, ie. a set of instances of the class Classifier. These classifiers are rules whose
meaning is described by a subclass of the abstract class Template. If the Simulation
contains an AgentClassifierLearning, then the system tries to learn its behaviour by
using the Learning Classifier System previously described, and implemented in the
classes ZClassifierSet and ZClassifier.

5.3.1 Simulation

The Simulation class is the main class of the system. It is responsible for keeping a
record of all the entities (arena, agents, etc) which interact in the simulation, and
managing the simulation itself, through a Thread Animation.

The use of a thread is quite usual for this kind of program, where the simulation
requires a lot of calculations: if only one thread was used, the simulation could
remain busy calculating the positions of the agents and the inputs from the user
(through the GUI) would be most of the time ignored by the program. Launching
another thread allows the program to switch very often between the thread handling
the GUI and the thread calculating the positions, thus being able to react to user
inputs.

The following important methods belong to the Simulation class:

• add(Entity) which add an entity to the simulation. This method can be called
by clicking on a button of the GUI or at the beginning of the program, by the
application itself.

• start(), which starts the simulation.

• stop(), which pauses the simulation (it can be resumed by calling start() again).

• finish(), which ends the simulation, closes the log files and allows the user to
start another simulation (using reset()).

• step(), which runs the simulation only for one time step. This is very useful
for debugging: if we want a lot of informations to be sent to the console (to
understand what the program is doing), we cannot have these informations
dispatched to the console at each time step, because this would cause the
program to be very slow, since it needs to output a lot of data to the console
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Figure 5.2: Class diagram overview. The GUI classes are not shown. Classes with
a grey background are utility classes. Inheritance is shown with an arrow subclass ⊲
superclass.
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continuously. Thus the possibility to execute only one step was designed, with
the ability to switch the program from a ”low information mode” to a ”verbose
mode” to see the details of the computation.

Animation

The Animation is responsible for executing the main procedure described page 31.
It implements the interface Runnable so that it can be used for creating a Thread. At
each time step, it calls the function move for each entity belonging to the simulation,
and repaint the entity if the GUI has been launched.

A summary of the Simulation class (UML diagram) is given in Appendix C.

5.3.2 Entity

Entity is an abstract class that provides a unified definition of all the things that
could interact with an Agent. It was decided to use it as a superclass for Agent and
for other kinds of entities which cause the Agent to react.

The design of this class can be related to the Abstract Superclass Pattern (page
67, [Grand, 1998]): the idea is to ensure that an Agent can consider all the entities
around in the same way. Indeed, in the duck model designed for the RSP Project,
a duck reacts not only to other ducks but also to the wall, and its reaction to the
wall (repelled) is very similar to its reaction to the robot sheepdog: in both cases, its
reaction depends on the distance (and the unit vector) between him and the other
entity (and a constant).

Therefore it was decided that all the entities would implement a common abstract
class Entity, which provides the basic attributes:

• name and id: entities can have a common name which might be displayed in
the simulation, but they have a unique id (identifier), used for example when
we need to debug and know quickly which entity is currently used;

• color and size, used to draw the circle in the display;

• coord: the current position (a Point2D) of the entity in the simulation.

and the following methods:

• paint(), which by default draws a circle of radius size at position coord with
color color;

• getCoordNearTo(Entity other), which gives the distance between this entity and
the Entity other;

• move(), which is an abstract method and has to be implemented by subclasses.

Here it is important to notice that we voluntarily allow subclasses to reimplement
those functions. An obvious example is the getCoordNearTo method: although for
most of the entities, we will consider their current position (coord) as the position
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used to calculate the distance from this entity to an other entity, the Arena should
reimplement this function. Indeed, the Arena is a big circle and the closest point of
the Arena to a given Agent is not its position (arbitrarily fixed at (0, 0)), but should
be calculated as the closest point of the wall, which depends on the position of the
Agent and the size of the Arena.

Finally, the move() function, called for each entity by the Animation thread,
should be implemented by subclasses: the Arena is not moving, whereas an Agent
can move.

The following hierarchy inherits from the superclass Entity (this hierarchy is re-
produced in Appendix C as a UML diagram):

• Arena, an Entity which doesn’t move and represents the circular wall around
the agents.

• Food, another non-moving Entity used to test a new stimuli for the Agents.

• Agent, the superclass of all the different Agents. We used inheritance to ensure
that our system was working at each stage of the development, by expanding
the possibilities of an Agent using subclasses. Thus a simple Agent is just placed
randomly inside the Arena and moves randomly. Agent has several subclasses
more elaborated:

– AgentDuck, an Agent that moves according to the initial flock model
(equation) of the RSP. This was used to try our system and see how
the ducks are flocking with this behaviour.

– AgentInteractive, an Agent that moves according to the position of the
user’s cursor (mouse). This allows us to have a ”manual” robot sheepdog,
which is useful for testing the response of the ducks to a simulated robot.

– AgentClassifier, an Agent that moves according to a set of rules, called
the behaviour. Two subclasses were developed:

∗ AgentClassifierDuck, an Agent having a duck behaviour; this Agent’s
behaviour is not learned by the system.

∗ AgentClassifierAutomatic, an automatic Agent that can change its be-
haviour over time to test several situations (it will be described in
section 6.2).

∗ AgentClassifierLearning, the last class of our hierarchy. It has a real
behaviour (since it is a subclass of AgentClassifier) but also an expected
behaviour, which is the behaviour the system tries to infer from the
movements of the agent.

The class AgentClassifierLearning implements the learning method described in
Procedure 2 page 41. At each time step, a call to its move() method defines its new
position according to its real behaviour (defined by the user at the beginning of the
simulation) and the system tries to guess this new position by calculating it from
the set of rules describing its expected behaviour.
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The two processes are completely separated: although the program obviously
”knows” the rules programmed inside the mind of the Agent, one part of the program
is never ”aware” of these rules, and tries to learn them by observing only the
movements of the Agent. The two behaviours (the real one and the expected one)
never interact during the experiment.

Therefore the Agent itself is not learning ; it is just moving according to a set of
rules. But we have ”plugged” a learning system which follows its movements and
tries to learn these rules (cf the analogy described page 41).

In order to use a Learning Classifier System technique, the behaviours are imple-
mented as set of classifiers, using the class ClassifierSet. The meaning of these rules
is given by the Template they used, which should be a subclass of the abstract class
Template.

5.3.3 ClassifierSet and Classifier

A ClassifierSet is simply a set of objects of type Classifier. We used the implemen-
tations of the Java abstract class Abstract Set provided by the Java library, such as
HashSet for a basic set and TreeSet when we needed to sort the classifiers.

The superclass ClassifierSet is used to represent a behaviour, and the subclasses
might implement several functions to deal with the Learning System.

The superclass contains already some useful functions, such as:

• addClassifier,removeClassifier;

• getIterator, which returns a way to access sequentially to all the classifiers
(described as the Iterator Pattern by [Gamma et al., 1994], it is now directly
provided by the Java library when using a Set);

• getMatchSet, which extracts all the classifiers matching a given situation (cf
explanations page 38 and procedure 6 in Appendix A);

• getActionSet, which by default returns simply the Match Set (no selection);
this function has to be overriden by a specific implementation of a LCS.

Here we can recognize the idea of the Template Design Pattern (see page 325 of
[Gamma et al., 1994], or page 419 of [Grand, 1998]). Indeed the algorithm in the
method moveAndLearn of the class AgentClassifierLearning is just a ”skeleton” of the
method described in procedure 2 (p. 41) using some basic elements (it calls getMatch-
Set, getActionSet, etc.) but the details of these elements depend on the implemen-
tation chosen (by extending ClassifierSet). We have developed the ZClassifierSet as a
subclass of ClassifierSet, to implement the specific features of our learning system,
such as the Roulette Wheel Selection for the getActionSet method, the Update Set
function, the Genetic Algorithm, etc.

The basic algorithms are very common and some implementations can be found:
see for example, Martin V. Butz’s implementation2 of the XCS [Butz, 2000]. How-

2freely available from the Illinois Genetic Algorithms Laboratory FTP.
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ever, it was difficult to re-use this work since Butz has developed an eXtended Clas-
sifier System (XCS), which is a different kind of Learning Classifier System (see
[Butz and Wilson, 2001] for a good definition of the XCS). His implementation was
also very different than ours, since his XCS is not adapted for multi-agent system.
However the basic functions such as how to do a crossover or how to do a mutation
are the same for most of the applications using a Genetic Algorithm and at the end
we re-used around 100 lines of code from his implementation.

The class Classifier represents a classifier, with a condition part and an action
part. This class provides several functions to deal with the bits of the classifier
(getBits,setBits), and to check if a classifier matches a given sitation (cf procedure 7
in Appendix A).

Here again, to provide a new implementation for the Learning Classifier System,
one just needs to create a subclass of Classifier to implement the specific features of
his system. We have developed the ZClassifier class which adds to the classifier the
notion of strength (the eXtended Classifier System, XCS, would use the accuracy
and the fitness instead).

A ClassifierSet contains classifiers whose meaning is given by a Template. There-
fore each ClassifierSet contains a reference to the template used.

5.3.4 Template

This is one of the important feature of our system. For the meaning of the rules,
we have created a system of Templates, which can also be related to the Template
Design Pattern. The idea is to create an abstract super class providing several generic
functions which need some sub-functions that the subclasses must implement.

A Template should give the meaning of each bit of the condition and action
of a classifier. Several bits can be grouped together to obtain a meaning (in our
dog example, the two bits of the Action part are used to describe four different
actions, but each bit doesn’t have a particular meaning), so we used another class
ClassifierComponent, to describe these groups of bits.

The four important roles of a Template are:

1. giving the detail of the number of bits used for the Condition and Action parts.

2. giving the description of a given Entity for each bit of the Condition part
through the function testCondition(int i, Entity e). In our dog example, test-
Condition(1,Entity) would call the property isBig() of the Entity, and return the
result; testCondition(2,Entity) would call the property isRed() and return the
result.

3. giving the description of the meaning of the bits of the Action part, with
getVectorFromAction. In our example, an Action 01 would generate a call to
the method destroy() for the other Entity. However, in our problem we only
consider the movements of the agents, so the Action does not directly generate
a call, it just returns a Vector2D which will be used to calculate the movement
vector.
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4. giving a description of those bits in a way that can be understood by our GUI,
so that the user can modify the bits by clicking on a checkbox or by choosing
a value in a list (rather than directly modifying the bits).

With these informations, the superclass Template can determine the sequence of
bits that define the Entity according to the template (this is done with the method
testCondition(Entity)), and can calculate the resultant vector for all the classifiers in
an Action Set (getVectorFromActions) by calling sub-procedures implemented by the
subclasses.

Therefore, to test different ways of describing the behaviours of the ducks, we
just need to extend the superclass Template and give the details of our description
in the subclass.

We give in Appendix C the UML diagram of the abstract class Template and
one implementation (which corresponds to a definition of a behaviour discussed in
chapter 6).

5.3.5 Utility classes

Several small classes were designed for specific tasks:

• Vector2D which manipulates a Vector in two dimensions. It can for example
create a Vector from two points, or a unit vector between two points, etc.;

• Utils which is used for saving the coordinates of the cursor, in order to manipu-
late manually the agent AgentInteractive; it also contains several functions used
to record the results (writing the data files, etc);

• ZCSConfig which is used to fix the values of some constants for our ZCS im-
plementation (size of the population, probabilities, etc.);

• Config which deals with some other global constants such as PRINT MODE
used to tell the program how ”verbose” it should be, or FOLDER DATA giving
the folder used to save the data files, etc.

5.4 The Graphical Interface

The Graphical Interface (package simuLCS.graphics) was designed using mostly the
Swing library. It has been designed so that the user can modify the behaviour of
the Agents and see their reactions in the simulator; the user can also have an idea
of how the Learning system is working.

Figure 5.3 gives an overview of the main components of the GUI.
The panel on the right shows the simulation running and the agents moving

within the Arena; the user can move the position of the sheepdog (if there is an
AgentInteractive) and observe the reactions of the other agents.

The panel on the left is the customization and control panel. The Control Buttons
are linked to the functions described above for the class Simulation (start(), stop(),
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Figure 5.3: Overview of the GUI with the Tab Agents active. For the two other tabs,
see partial screenshots on Figures 5.4 and 5.5.

etc.). Below the Control Buttons, there is the customization panel, and at the bottom
a status bar gives information to the user.

5.4.1 Implementation of the GUI

We used several techniques and design choices to develop our GUI.
First, in order to be sure that only one window is displayed at a given time, we

used the Singleton Design Pattern ([Gamma et al., 1994] page 127). This pattern
ensures that a class can only have one instance, by protecting the constructor of the
class, and providing access to only one instance through a static method getInstance.

Second, the GUI was constructed with a tree structure, as it is usually the case
with a GUI: a top component is the frame, and inside the frame we can find two
panels, the panel for drawing and the panel for customizing; inside these panels, we
put other panels, and so on.

The diagram on Figure C.5 in Appendix C shows the top of this tree structure.
However, each of these components must access to the same objects, namely the

entities and their classifiers. Furthermore, when a component modifies one entity,
the other components should be notified of the changes. In order to do that, we used
the following method: all the graphical components (except the main frame which
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must be a subclass of JFrame in order to be displayed) are subclasses of a superclass
G Panel which we created. G Panel itself is a subclass of the Swing class JPanel, a
basic GUI component.

The G Panel class has the following features:

• static members pointerSimulation, pointerMainWindow, pointerCustom which are
initialized at the beginning to provide access to the Simulation, the Window
and the Customization Panel;

• static methods repaintAll() which causes all the window to be repainted, and
repaintCustom() which causes only the Customization to be repainted;

• static members currentEntitiesSelected and currentEntityToWatch with static
methods to access them.

Thus whenever an interactive component (eg. a checkbox) is used by the user,
it applies the changes to all the entities in the current selection, by having access to
those entities through the static method getSelectedEntities (inherited from G Panel),
and calls the appropriated static method repaint so that all the components are
updated.

For example, the following scenario is used to change the color of an Agent (eg.
to distinguish it inside a flock):

1. The user clicks on the checkbox corresponding to this Agent below the header of
the Tab Agent. The program knows which entity is associated to this checkbox
because the GUI has access to the instance of the Simulation; the G Panel
containing the checkbox updates the set of selectedEntities by adding this entity,
and repaint the Customization Panel (in case there is another component which
should display some information about the current selected Entitites).

2. The user click on the button ”Change Color” and selects a color: the container
of this button will get access to the current selected entities through a call to the
corresponding static method inherited from G Panel. All the selected entities
will have their property color changed, and a call to repaintAll will update the
drawing so that the new color is displayed.

The call to the repaint method uses a property of the containers directly pro-
vided by Swing: whenever a repaint() method is called for a graphic component,
the component automatically calls repaint() again for all its ”children” ie. all the
components it contains. By reimplementing the final paintComponents() (used by
repaint()) for a component, we can ensure that it updates its state and displays an
updated information.

As we can see, we don’t really use the ”pure” Observer Pattern, because there
is only one window, the components can call themselves the repaint() function, since
there is no other external display to repaint. The Observer Pattern is more useful
when several displays are used to present one information, and each of them doesn’t
know about the others, which is not the case here.

The last feature of our GUI is that we have created re-usable components, so that
they can be used in several places of the interface.
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5.4.2 GUI Components

While building our GUI, we had to create re-usable GUI components for two main
reasons:

1. there are several components which present a different information but with
the same display; a typical example is given Figure 5.4: in order to present
to the user the real behaviour to compare it with the expected behaviour, the
two lists of classifiers need to be displayed. There was scope here to design a
re-usable component.

2. when we want to design a new Template for the behaviours, it shouldn’t require
to write the source code for the GUI. By giving the details of the meaning of
each bit, the system should generate the adequate GUI so that the user can
change the behaviour according to the chosen Template. On Figure 5.5 for
example, the buttons used to change the Condition and Action of the selected
classifier are generated automatically from the description given by the Tem-
plate.

Figure 5.4: Two different behaviours
shown using the same component.

Figure 5.5: Using components to create
the GUI for an example of Template.

The component G ListClassifiers displays a behaviour (ClassifierSet) specified as
a parameter. It has several options, such as:

• The ability to be enabled (so that the user can select a classifier) and linked
with another list: in the figure 5.4, we can see how this works: depending on
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which real classifier is selected by the user, the program highlights the classifiers
in the expected behaviour (the population of classifiers inside the LCS) whose
condition is matched by the condition of the real classifier. This is used so
that the user can see which classifiers in the population correspond to the
same situation (in the example, all the highlighted classifiers in the bottom list
could be activated for the robot, since their [Condition] part is more general
than 11, which is the [Condition] part of the selected real classifier above).

• The ability to add or not the filters (shown below the bottom panel in Fig-
ure 5.4) which change which classifiers are highlighted (for example, if the
checkbox Action: Exact is activated, only the classifiers having the same action
part as the selected real one will be highlighted). The change in the highlighting
of the classifiers is done by reimplementing the list renderer (ListCellRenderer),
which tells how the list should look like.

The component G ListButtons displays a list of buttons used at the top of the
tabs to select which entities are going to be customized (cf the top of Figures 5.4
and 5.5). As it can be seen on these screenshots, it is also possible to specify if several
entities can be selected (in which case the GUI use checkboxes, see Figure 5.5) or
just a single one (in which case the GUI use ”radiobuttons”, see Figure 5.4).

Figure 5.6: Re-usable GUI components developed.

Finally, we created an abstract superclass G ClassifierComponent for the classes
implementing components which show one part of the classifier. For example, in
Figure 5.5, the Template ”explains” that the second bit of the Condition is a ”yes/no”
bit with the following meaning: 0 means not red, and 1 means red. The Template
explains also that another possibility should be both with the usual don’t care symbol
(#). From these informations, the system uses the component G ClassifierComboBox
to generate the list shown on the screenshot. G ClassifierComboBox is a subclass of
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G ClassifierComponent which just describes how the GUI component should be drawn
and how it should update its display for a given value (in the example either 0, 1 or
#).

As the diagram on Figure 5.6 shows, we have developed another similar compo-
nent for this purpose, which provides a checkbox rather than a list of options.

5.5 Interaction with the User

The user can:

1. control the simulation (starting, pausing, resuming, finishing it);

2. customize the agents (color to differentiate an agent among the flock);

3. customize their behaviours, by adding or removing interactively rules (Button
”+” and ”-”)and modifying them by clicking on the appropriate components
(see Figure 5.5). Thanks to the ability to select several entities, the user can
create rules that are shared by several entities so that they have a common
behaviour.

4. control an AgentInteractive with the mouse to test the reaction of the other
agents.

The system gives the following information to the user:

1. information about the simulation, with the display (position of each agent);

2. information about what the system is doing (through outputs in the console -
the level of ”verbosity” can be chosen by the user with the menu ”Log”);

3. visual information about how ”well” the system is learning;

4. recorded information about the performance of the system.

For the third piece of information, the GUI uses several ways to present this
information.

A Thread (UpdateThread, an inner class of the class Simulation, launched when the
simulation starts) updates every x seconds (usually 3) the bottom panel in Figure 5.4,
to show the current population of classifiers for a given entity. This list is ranked
so that the user can see which rules are currently the ”best” ones in the population
(highest strength). Thus the user can check if the first rules of the expected behaviour
are similar to the real rules programmed inside the mind of the Agent. The user
can also interactively updates this list at a given time with the button ”Update
Behaviour” (see Figure 5.4).

Furthermore, at each time step, if the option ”Ghost is Painted ?” is selected, the
user can see what we called the ghost of the entity. The ghost simply represents
the expected position, guessed by the learning system. When the error between the
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expected position and the real position is big, the user can then see two circles, one
representing the real position of the agent, and one (having a G -for Ghost- added
to its name) representing the expected position. Thus the user can quickly see when
the system is having problems to guess the next position of the agent, and when the
system is working well (in which case the ghost will hide the agent’s drawing). On
the example given by the Figure 5.7 the ghost has problems to guess the behaviour
of the Agent 2 close to the wall.

Figure 5.7: Partial screenshot showing the agent 2 and its ghost 2G having problems to

guess its position. NB: the arrow indicating the error has been added manually to the

screenshot.

Finally for the fourth piece of information, the system produces data to measure
the performance of the learning system for each experiment, with the method detailed
in section 3.4.2 page 34. At the beginning of the simulation, the program asks in
which file it should put the results, and through the simulation, every x time steps,
it writes the average reward obtained by every agent in an output file. When the
simulation is finished, the output file is closed and the program generates a command
file for the program gnuplot, a common plotting program which is then used to
create the graphs. It also generates a file with the extension ”.rules” giving the set
of rules in the population of the LCS for each AgentClassifierLearning at the end of
the simulation.
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5.6 Summary

We have described in this chapter our program of about 5000 lines of code3, and ex-
plained how we used the Object-Oriented paradigm (and Design Patterns) to obtain
a system able to be easily extended.

We have first built a simulator for the following multi-agent system: a set of
entities moving together in a 2D environment. The movements of the entities can
be:

• pure randomness (class Agent);

• calculated as a function of the positions and features of the other entities (class
AgentDuck);

• depending on the position of the user’s cursor (class AgentInteractive);

• described by a set of classifiers (classes AgentClassifier and AgentClassifierAuto-
matic) whose meaning is given by a Template (ie. a subclass of the abstract
class Template).

Several Templates can be tried just by implementing the abstract class Template.
The simulator is working and has been tested with R. Vaughan’s model for the

ducks (implemented in the class AgentDuck), and we have observed a flocking behav-
iour as a response to a threat represented by a simulated sheepdog (moved manually
using the mouse).

Then a Learning Classifier System has been ”plugged” in a certain kind
of Entity, the AgentClassifierLearning. The specifications of the Learning Classifier
System can be implemented by extending the classes ClassifierSet and Classifier. Our
adaptation of the Zeroth-Level Classifier System (described in Chapter 4) has been
developed with the classes ZClassifierSet and ZClassifier.

Finally, a GUI allows the user to easily customize the simulation between the
different experiments and watch the learning system working. Another way to assess
the performance of the system is to generate a graph from the data recorded by the
program.

3statistic generated using David A. Wheeler’s ’SLOCCount’.
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Chapter 6

Results and Discussion

6.1 Introduction

As we stated previously, our project was experimentally oriented: it consisted of
several experiments performed with different Templates and different techniques for
the Learning System. Following the methodology given page 33, we tried to define
a description of an agent’s behaviour as a set of rules which can be learnt by our
Learning Classifier System. Through a large number of experiments we changed the
Templates, adapted the algorithms, tuned the parameters of the Learning System,
etc. We present in this chapter the biggest steps which improved the performance
significantly during this process, and explain how we designed these improvements.

In order to draw useful conclusions from the experiments, we had to specify an
experimental setup which should be followed for all the tests. We first present this
experimental setup and then give an account of the most important experiments,
together with a discussion about the results we obtained.

6.2 Experimental Setup

6.2.1 Motivation

In order to be able to compare the different techniques, we had to design an exper-
iment that could be easily repeated. Because we had in mind an extension to the
Robot Sheepdog Project as a major application of our project, we tried to do some
experiments with several agents representing the ducks and one agent representing
the Robot Sheepdog inside the circular Arena. The Robot was manually moved with
the mouse to observe the reaction of the flock (using our class AgentInteractive, cf.
page 50) and the Learning System working.

However, it was soon decided that this could not be used as a good benchmark
for the performance of our system, since an important part of the experiment was
done manually (the Robot’s movements). The way the Robot was moved could affect
the way the agents were reacting, and as a result the Learning System could work
differently. Therefore it was decided to design an Automatic Robot Sheepdog,
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ie. an Agent that would always have the same behaviour towards the others Agents.
Since we wanted the system to learn how the Agents are reacting to each other, and
especially to the Robot Sheepdog, it was decided that the Robot Sheepdog would
have two different behaviours: chasing the agents and going away from them. Thus
two different situations can be tested: (1) Agents having the Robot Sheepdog very
close to them and (2) Agents having the Robot Sheepdog very far. But using an
automatic movement for the Robot Sheepdog we had to face an important problem:
what if the flock splits and the Robot chases only some of the Agents?

Furthermore, using several agents for a flock increased a lot the complexity of the
behaviour of one agent, since every entity around one Agent can affect its behaviour
(cf Procedure 3 page 42). This made the learning very difficult and it was finally
decided to make the first experiments with only one agent and the Robot, thus
avoiding the splitting effect and reducing the difficulty.

However, this reduced experiment cannot be compared to a simple Prey/Predator
environment, because the Arena is considered by the Agents as a normal entity .
Therefore 3 entities are in fact ”interacting” in the environment which we decided
to focus on: the arena (which does not move), the agent representing the duck, and
the agent representing the Robot Sheepdog.

6.2.2 Description

We used the following experimental setup for the experiments described in sec-
tions 6.3 to 6.5.

The entities used were:

• a circular Arena of 600 pixels of diameter (representing 6 meters);

• an AgentClassifierLearning (called Agent 2 ) of 20 pixels of diameter with a
Learning Classifier System ”plugged” in (using the specifications detailed in
Chapter 4 with the constants given in Appendix D);

• an AgentClassifierAutomatic1 (called Ra) of 25 pixels of diameter which used the
two following behaviours: (1) chasing the Agent 2 while avoiding the wall and
(2) going away from Agent 2 while avoiding the wall. These behaviours are
presented in equation 6.1 for behaviour (1) and equation 6.2 for behaviour (2);
in those equations, D represents the position of the ”duck” (Agent 2) and W
is the nearest point on the wall (Arena). We found experimentally that KD =
30,000 and KW = 2,000 provided a quite agressive behaviour for Agent Ra,
which was useful for really testing the reactions of Agent 2, as we will explain
later.

1For convenience, this automatic agent was implemented using two behaviours described with
classifiers whose meaning was given by the Template TemplateRSP that we describe in the first
experiment.
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The experiments were run as follows:

• At the beginning, Agent Ra and Agent 2 are placed randomly inside the Arena.

• During 30,000 time steps, the Agents (Ra and Agent 2 ) move according to their
behaviour, and a Learning System tries to guess the behaviour of Agent 2, by
evolving a set of 40 rules whose condition and action were initialized randomly
and whose strength was initialized with the value 5,000 .

• Every 3,000 time steps, the behaviour of Ra was switched so that only one
behaviour is active at a given time. Thus at the beginning, behaviour (1) was
active during the first 3,000 time steps, then behaviour (2) during the next
3,000 time steps, then again behaviour (1), and so on.

• Every 100 time steps, the average reward (over the 100 time steps) the Learning
System received is recorded to obtain a graph. The maximum reward that can
be obtained is 2,000, as described in Procedure 4 page 43.

• At the end of the 30,000 time steps, the set of rules inside the expected behaviour
(ie. the Learning System) was saved into a file to compare it with the real
behaviour. The rules are ranked according to their strength, to see which rules
were considered to be the ”best ones” by the system.

A first problem had to be solved while doing these experiments: when the Agent
Ra started to chase the Agent 2, it went straight to it and could sometimes push it
outside the Arena. This happened because our system is, by definition, using discrete
time steps: when the Agent 2 was between the wall of the Arena and the Agent Ra,
the movement vector ~M t

2 could put it outside the Arena at the next time step if the
Agent Ra was very close to Agent 2. In a real-world situation, the Agent 2 (eg. a
duck) would come infinitely close to the wall and the repulsion from the wall would
become so strong that the Agent would move either on the left or the right in order
to avoid being stuck between the wall and the Agent Ra chasing it.

We avoided this problem in our simulation by combining the following two tech-
niques:

1. We limited the maximum speed of the Agent Ra so that it cannot come too
close to Agent 2 too quickly. At each time step, the Agent Ra can make a move
of m pixels maximum (we took m = 5).
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2. Ra’s behaviour was modified a little bit so that when it comes quite close to
the wall it does not go straight but a little bit on the right (cf Figure 6.1).
Thus the Agent 2 will react by moving to the opposite direction and it will not
stay stuck between the wall and the Agent Ra any more (cf Figure 6.2).

Figure 6.1: Agent Ra does not go
straight to Agent 2.

Figure 6.2: After Ra’s move, Agent 2 can
escape.

We describe now the main steps we took to improve our system, together with
the experiments that lead to those changes.

6.3 Experiment 1

6.3.1 Description

This experiment was our first attempt to describe the behaviour of the ducks (equa-
tion 6.3) in a form that can be applied to a Learning System.
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Behaviour of a simulated duck. Refer to Figure 3.1 page 32 for more details.

The idea was to find common characteristics to each of the terms (1) to (4) so
that each term can be represented by a rule following a unique Template.

We decided to use the following characteristics:

1. each term ”generates” a vector ~vej⇒ai
which is part of the resultant vector.
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2. the direction of the vector ~vej⇒ai
is given by the sign + or - and the unit vector

of the vector between the Agent ai and the entity ej. The entity ej can be the
Arena (the nearest point on the wall is used), the Robot, another duck, etc.

3. the scale of the vector is given by a constant (K1 to K4) divided by the square
distance between the Agent ai and the entity ej . A constant L can be added
to the denominator to prevent collisions (ie. to ensure that repulsion [term (2)]
is greater than attraction [term (1)] at small distances).

Therefore we designed the following Template, called TemplateRSP:

• Condition: there are three different type of entities which can affect a duck’s
behaviour (arena, duck, robot). Therefore we used two bits to describe the type
of the entity. In order to make the bits more meaningful, the first bit answers
the question ”Is this entity moving?” and the second bit answers the question
”Is this entity dangerous?”. Therefore the wall is, by convention, defined by
01, the robot by 11 and another duck by 10. Using two bits we can define a
new type of entity, namely 00 (not moving and not dangerous, eg. some Food).

• Action: all the bits are used to describe the vector corresponding to the
reaction of the agent to the other entity. The first two bits define the direction
of the vector (00 for towards the other entity, 01 for on the right of the other
entity, etc. cf Fig. 6.3). We found that good values for the constants K1→4

were ranged between 500 and 8,000 to have a quite realistic behaviour, so we
used the next four bits to encode 16 different values between 500 and 8,000
(every 500). Finally the seventh bit was set to 1 if the constant L should be
added to the denominator.

Figure 6.3: Meaning of the two first bits of the Action part: the direction of the vector.

Two bits allows us to expand the range of directions, to create more complex behaviours.

With this template, we can then transform the four terms in equation 6.3 into
four rules given in Table 6.1 (with the following values for the constants: K1 = 3000;
K2 = 1000; K3 = 500 and K4 = 8000).

As an example, if the agent ai has to react to the robot R whose definition is 11
(moving and dangerous), it will activate rule (4) and the generated vector will be
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Duck 1 0 → 0 0 0 1 0 1 1 Term (1)
Duck 1 0 → 1 0 0 0 0 1 0 Term (2)
Wall 0 1 → 1 0 0 0 0 0 0 Term (3)

Robot 1 1 → 1 0 1 1 1 1 0 Term (4)
CONDITION ACTION

Table 6.1: Full behaviour of a simulated duck described with the TemplateRSP.

as stated in equation 6.4. Indeed its [Action] part describes a vector in the opposite
direction (angle 10) with a scale of 1111 which corresponds to 15, that we multiply
by the step between each value (500) and add to the minimum value (500). The
”collision bit” is set to 0 so the constant L is not added to the denominator.

~vR⇒ai
= −

(
500 + 15× 500

|
−→
aiR|2

)
âiR (6.4)

With these four rules, the model given in Equation 6.3 is fully and exactly
described. For each entity, the simulated duck activates the rules whose condition
part is the same as the definition of the entity and adds the generated vector to
its movement vector. The sum of the generated vectors given by the rules 1 to 4

is exactly the vector
−→
d described by Richard Vaughan’s model. Indeed, we have

tested this behaviour with the class AgentClassifierDuck and we observed exactly the
same behaviour as the AgentDuck’s one which was directly implemented with the
mathematical model (no classifier).

Thus we had a way to describe the behaviour of the ducks with classifiers. We
then applied the Learning System to see if it could learn these four rules that we put
inside the ”mind” of a simulated duck.

6.3.2 Results

The first results were very disappointing. Although we obtained a good flocking
behaviour, the Learning System was not able to learn the four different rules with
several agents interacting. We tried numerous ways to improve the system, but we
did not manage to obtain interesting results.

It was then decided to follow our methodology and to simplify a lot the problem.
The first simplification has been given in the Experimental Setup: we restricted the
problem to only three entities (one ”duck”, one robot, and the arena). This was a
major decision, since with only one ”duck” no flocking behaviour can be observed
nor learnt. Therefore we decided to simplify as well the behaviour of the remaining
”duck” (we prefer to call it ”Agent” in the following since its behaviour is different),
and to keep only one ”generic” rule given in Table 6.2.
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Wall & Robot # 1 → 1 0 1 0 1 1 0 Avoiding Danger
CONDITION ACTION

Table 6.2: Simplified behaviour with the TemplateRSP (only one generic rule).

This rule handles the reaction of the Agent to two different type of entities (thanks
to the ”don’t care” symbol #): wall (01) and robot (11). Therefore this simplified
behaviour tells the Agent to go away from any dangerous entity.

With this simplified problem, we hoped to get better results, because the Learning
System had only one rule to learn.

We ran several experiments following our experimental setup but again the results
were not good, as the Figure 6.4 shows.
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Figure 6.4: Average reward using the TemplateRSP with the real behaviour
{”#1→1010110”} (only one generic rule).

Figure 6.4 is a typical graph obtained for the experiment described in section 6.2.2.
It shows that when the Agent Ra is chasing the Agent 2 (every 3,000 time steps,
starting at time step 0), the reward obtained by the Learning System is very low
(around 1,000) and not increasing. This means that the system is using the wrong
rules to guess the next position of the agent; furthermore, it does not manage to
increase the number of good rules which could lead to a better reward. The high
rewards obtained when the Agent Ra is far from the Agent 2 are easily explained:
when Agent 2 is not ”stressed” (ie. no entity close to it), its movements are very
small (it almost doesn’t move). Thus any rule will generate a very small vector, since
the scale of the vector is divided by the square distance between the Agent and the

67



CHAPTER 6. RESULTS AND DISCUSSION 6.4. Experiment 2

other entity (denominator) which is big. Therefore even with using ”wrong” rules,
the system can still get good rewards since its error is very small (both real position
and expected position are very close to the current position, no matter which rules
are used).

6.3.3 Discussion

Even with only one rule and three entities, the Learning System did not manage to
learn the behaviour of the Agent 2. At the end of the 30,000 time steps, the expected
rules (inside the Learning System) are quite different from the real one, even though
some of the top ranked rules appear to have some similarity with it (see listing of
the rules in Table E.1 in Appendix E).

Since the Learning Classifier System paradigm has already been applied with
some success reported by researchers in the literature, we tried to understand those
bad results by comparing their methods to ours. It appears that most of the time,
their Learning Classifier System had to learn rules which have only a limited number
of possible actions. Wilson’s Boole system was learning rules whose Action part
can take only two different values [Wilson, 1987]. [Dorigo and Colombetti, 1998]
and [Sigaud and Gérard, 2001a] allowed the Action part to have only 8 or 16 values.
Indeed, for a given input, if the number of possible actions is high, it is more difficult
for the LCS to learn which action is the best one, since there are too many different
actions to try.

In our TemplateRSP, the number of possible actions is 27 = 128 (7 bits) and since
there are 9 possible conditions (because each bit can take 3 values for the Condition
part: 0, 1 or #), the total number of possible rules is 32×27 = 9×128 = 1152. These
high numbers seem to play an important role in the difficulties encountered by our
Learning System, which doesn’t manage to find the good rule out of more than one
thousand.

6.4 Experiment 2

6.4.1 Motivation

Following our methodology, we decided to simplify the problem again, since it seems
too complicated for the Learning System. In order to do that, we kept only the
essential common features of the term of the Equation 6.3, to obtain a new Template
called TemplateRSPVerySimple with a much lower number of possible actions.

6.4.2 Description

TemplateRSPVerySimple is based upon TemplateRSP (indeed, this class inherits from
TemplateRSP to re-use part of the code) while simplifying a lot the Action part:

• Condition: unchanged, two bits used as in TemplateRSP.
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• Action: the direction is given by only one bit (thus allowing only two possible
values, 0 for towards the entity and 1 for on the opposite direction). The scale
is described by two bits with the minimum value set to 0 and the step to 2,000.
There is no ”collision” bit: no constant can be added to the denominator.

This simpler Template, with only 3 bits for the Action part, was designed in such a
way that the behaviour of the previous experiment can still be reproduced. Indeed,
the rule ”#1→1010110” with the TemplateRSP generates the same vector as the rule
”#1→111” with the TemplateRSPVerySimple (cf. equations 6.5 and 6.6).

~vE⇒ai
(1010110TempRSP ) =

bits 10︷︸︸︷
−




500 +

bits 1011︷︸︸︷
11 ×500

|
−−→
aiE|2 + 0︸︷︷︸

bit 0


 âiE

= −

(
6000

|
−−→
aiE|2

)
âiE

(6.5)

~vE⇒ai
(111TempRSPV erySimple) =

bit 1︷︸︸︷
−




0 +

bits 11︷︸︸︷
3 ×2000

|
−−→
aiE|2


 âiE

= −

(
6000

|
−−→
aiE|2

)
âiE

(6.6)

Thus we put the same behaviour (but described in a simpler way, cf. Table 6.3)
into an AgentClassifierLearning to measure how the Learning System is performing.
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Wall & Robot # 1 → 1 1 1 Avoiding Danger
CONDITION ACTION

Table 6.3: Simplified behaviour with the TemplateRSPVerySimple.

6.4.3 Results

The Figure 6.5 shows a typical graph that can be obtained with this new Template.
The average reward when Agent 2 is chased by Agent Ra is getting closer to 1200,
which is a bit better than the previous experiments.

It is important to notice that with this simple Template, the Learning System
managed to improve its performance when the chasing occurs (see the curve between
0 and 3,000 time steps, between 6,000 and 9,000 time steps and between 12,000 and
15,000 time steps). Indeed it was more easy for the Learning System to find the

69



CHAPTER 6. RESULTS AND DISCUSSION 6.4. Experiment 2

800

1000

1200

1400

1600

1800

2000

0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

R
ew

ar
d

Time Steps

Agent 2

Figure 6.5: Average reward using the TemplateRSPVerySimple with the real behaviour
{”#1→111”}.

”good rule” and once it has found it, to multiply the number of times it occurs in
the population (through the reproduction step of the Genetic Algorithm) and to
increase the strengths of these copies. However, it seemed that the information the
system had learnt during these 3,000 time steps was somehow lost during the next
3,000 time steps (no chasing), since the average reward after that was again quite
low.

Table E.2 in Appendix E gives the set of ranked rules after 30,000 time steps.

6.4.4 Discussion

With a simpler Template, learning can occur when Agent 2 is stressed. Indeed,
when Agent Ra is chasing Agent 2 and stays very close to it, Agent 2 has to make
relatively big moves to avoid Ra. Thus if the Learning System uses ”bad rules”, the
guessed position will be relatively far from the real position: the ”bad rules” will
be severely punished. This was already the case for the previous experiment, but in
this experiment the ”good rule” is easier to find (since there are only 23 = 8 possible
actions) in the search space; and once it is found it can be rewarded and multiplied
in the population.

However, when the Agent 2 is not chased any more, the system ”looses” its
experience. One possible reason for this problem was explained before: when the
Agent 2 is not stressed, it does only very small movements, because all the other
entities are far from it, thus almost not affecting it. Hence every activated rule
would be rewarded, even if it is not a ”good rule”, because its generated vector would
be very small: the guessed position and the real position are still relatively close,
thus the error is small, and ”bad rules” can overcome the ”good rules” previously
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learnt during the chase. When the chase starts again, the ”bad rules” are strong and
generate low rewards (because now the movements are bigger), and the LCS has to
learn again that these rules should be weakened.

6.5 Experiment 3

6.5.1 Motivation

In order to overcome the problem previously described, we wanted to find a way that
would avoid the loss of experience when the other entities are far from the Agent.

But a more important, recurring problem was to be addressed as well.
This problem that we called rule interference is quite specific to the research

question we chose, and we need to explain it in more details.
In most of the applications of the Learning Classifier System paradigm, the idea is

to learn which actions are the best to execute for a given situation. In the example
from [Dorigo and Colombetti, 1994] detailed on Figure 1.2 page 16, for instance,
the Animat can encounter 16 different situations (corresponding to the 16 different
positions of the light) and for each of these situations, only one of the possible Action
is correct.

In our problem, we decided to learn the rules inside the mind of the Agent only
from its movements, without knowing the details which generated this movement.
Let’s take our example with one Robot, one Agent, and one circular Arena. To make
the explanations more clear, we consider that the rules inside the mind of the Agent
are of the form ”if entity E is around, then move X steps away/towards it”. We
put the rules ”if Robot is around, then move 2 steps away from it” and ”if Arena
is around, then move 1 step away from it”.

Figure 6.6: Comparison of the resultant vector computed with the real behaviour and two

different expected behaviours (EB) from the same situation. EB 1 generates a correct guess

with wrong rules, and EB 2 generates a wrong guess but one of the rules was correct.

If we consider the situation given at the top of Figure 6.6, where the Arena is three
steps on the left of Agent 2 and the Agent Ra is two steps on the right of Agent 2, the
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real movement vector is given at the bottom left, calculated by applying successively
the two rules.

Let’s imagine that the Learning System uses the Expected Behaviour 1 shown on
Figure 6.6: ”if Robot is around, then move 1 step away from it” and ”if Arena is
around, then move 0 step away from it” (ie. no reaction to the Arena). The final
guess of the Learning System is correct, but the decomposition of the movement
is wrong. Hence two ”bad rules” are going to be rewarded although they do not
correspond to the real behaviour.

Even worst, when one rule is correct and the other is wrong (Expected Behaviour
2 in Figure 6.6), the resultant is not correct, and the two rules are going to be
punished, even though one was good. Indeed, the Learning System does not have
any information in that situation that can help it distinguishing the ”good rules”
from the ”bad rules”.

Therefore our problem is more difficult to learn for a LCS than a simple function
(f : input 7→ output), because several rules are combined to obtain the output.

The input is always the same (Ra and Arena around, so two rules must be acti-
vated), but the output might be different (depending on the position of the Agents)
so the LCS has difficulties to build a record of the form ”in this situation, this action
is correct”, which is what should normally happened for a classical LCS.

6.5.2 Description

It was decided to change a bit the specification given by the mathematical model
of a duck. In this model, a duck should be affected by any other entity inside the
arena, because each entity plays a role in the mathematical equation. However, as
we explained, this caused the Learning to be difficult, since several rules had to be
activated. In order to change the situation over the time (not always the same input
from the environment), we decided that the Agent would react only to the closest
entities. If an entity is too far from the Agent, this Agent does not activate the
corresponding rule and this entity does not affect its movement. Thus the Agent can
encounter several situations, including situations where only one entity is close to it:
in those situations, only one rule can be activated, and if a big reward is obtained by
the LCS, it necessarily means that this rule was good and corresponded to an actual
rule in the real behaviour, since there is no interference with another rule.

This idea solves the two problems we mentioned:

1. When the other entities are far from the Agent, no rules are activated so the
”experience” is not damaged by the activation of ”bad rules” which could get
rewarded because of the small movement vectors;

2. The situation is not always the same for the Agent, and the the problem de-
scribed in Figure 6.6 would be detected by the LCS when the Agent only reacts
to one entity. Indeed, even if the two rules of Expected Behaviour 1 can get a
reward in the situation shown on the figure, the LCS would punish separately
those two rules in a situation where only one should be activated. For exam-
ple, when the Agent Ra is the only entity close to Agent 2, the real behaviour
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generates a movement ”2 steps away from Ra” and the Expected behaviour 1
generates a guess ”1 step away from Ra”: the rule will be punished.

To implement this idea, we designed what we called a Visibility Circle, ie.
a Circle whose center is the Agent and whose radius can be understood as the
”detection limit” for the Agent: any entity outside the Circle is not detected by
the Agent (too far), thus no rule is activated. The Visibility Circle is shown on the
screenshot E.1 in Appendix E. We took the value 150 for the radius of the Visibility
Circle (1/4 of the Arena diameter).

6.5.3 Results

Using this technique, we finally obtained good results. We ran several experiments
and the Learning System usually managed to find which rule could get the maximum
reward and multiplied the number of copies of this rule inside the population. Indeed,
only by watching the simulation through the display, we could see very clearly the
number of such rules increasing throughout the experiment. These rules can easily
be seen in the expected behaviour because they are highlighted and the mention ”EX-
ACT” appears near to their Strength (cf screenshot in Figure E.2 in Appendix E).
A typical graph obtained with the TemplateRSPVerySimple and the technique of the
Visibility Circle is given on Figure 6.7.
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Figure 6.7: Average reward using the TemplateRSPVerySimple and the Visibility
Circle technique.

Sometimes the learning took more time than the 30,000 time steps, so we let
some experiments running until 100,000 time steps. Figure 6.8 shows an example of
an experiment where the learning was quite ”slow”.
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Figure 6.8: Another experiment run until 100,000 time steps.

6.5.4 Discussion

The Visibility Circle improved a lot our system, by providing a way to change the
number of rules activated depending on the situation.

It can be noticed as well that the experience was not lost when the chase is
finished. Indeed, when Agent Ra stopped chasing Agent 2, Agent quickly went away
from the Arena, until no wall was inside the Visibility Circle any more. Once Agent
2 was far from the Arena (distance greater than the ”detection limit”) and far from
Agent Ra, no entity was stressing it: it did not move at all. No rule was activated,
and of course the Learning System got the highest reward (cf Figure 6.7, when there
is no chase), but this reward is not distributed among the rules, since the Action
Set is empty. Thus the learning ”paused” during these periods. However it was
important that Agent Ra stopped and started again the chase, in order to have some
situations where Agent Ra is coming close to Agent 2, or when the Arena is the only
entity affecting Agent 2.

At the end of these experiments, the number of ”good” rules in the population was
quite high; Table 6.4 gives the rules obtained for the experiment shown on Figure 6.8.
Although most of the rules are of the form ”##→111”, they are in fact equivalent
to ”#1→111” because the environment does not provide any non-dangerous entity.
Therefore the Learning Classifier System tries to obtain the most generic rules, and
since it does not experience situations where there is a non-dangerous entity, it does
not specialize the Condition ## into #1.

Finally, it should be noticed that the best classifiers are reaching the maximum
strength they could get (50,000 - cf. explanations in section A.3 page 82).

It is concluded that a Learning Classifier System needs the situation to change
in order to learn which actions are best suited for a given situation. If the situation
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Real behaviour
#1 → 111 [Avoiding Danger]

Expected behaviour (rules inside the LCS)
1: 1# → 111 Str.:49481.22 21: ## → 111 Str.:40735.07
2: ## → 111 Str.:48691.996 22: ## → 110 Str.:39465.223
3: ## → 111 Str.:47790.508 23: ## → 111 Str.:39283.445
4: ## → 111 Str.:47618.824 24: ## → 111 Str.:36862.055
5: ## → 111 Str.:47593.445 25: #1 → 110 Str.:34848.16
6: ## → 111 Str.:47590.78 26: ## → 111 Str.:32832.7
7: ## → 111 Str.:47283.22 27: ## → 111 Str.:28290.654
8: ## → 111 Str.:47024.113 28: #0 → 011 Str.:24445.97
9: #1 → 111 Str.:46635.45 29: ## → 111 Str.:24189.408

10: ## → 111 Str.:46474.03 30: #0 → 111 Str.:23697.78
11: ## → 111 Str.:46442.758 31: 11 → 110 Str.:23411.918
12: ## → 111 Str.:46184.945 32: 11 → 110 Str.:23280.273
13: ## → 111 Str.:45771.82 33: 0# → 111 Str.:23091.12
14: ## → 111 Str.:44562.45 34: ## → 101 Str.:23006.137
15: ## → 111 Str.:44464.508 35: #1 → 110 Str.:19650.48
16: ## → 111 Str.:42035.598 36: 11 → 110 Str.:18931.193
17: ## → 111 Str.:41972.38 37: ## → 011 Str.:18226.93
18: ## → 111 Str.:41388.0 38: #1 → 011 Str.:17812.541
19: ## → 111 Str.:41144.824 39: 01 → 110 Str.:17784.512
20: ## → 111 Str.:40867.332 40: 11 → 110 Str.:16079.815

Table 6.4: Expected behaviour learnt for Agent 2 after 100,000 time steps, compared
with the real behaviour. Same experiment as in Figure 6.8. [”Str.” means Strength]

is always the same, and especially if several rules are always activated, a LCS has
difficulties to learn, because of rule interference (cf Figure 6.6).

It is also concluded that rewards should be given to the Learning System only
when there is a high presumption that the activated rules are quite good. In this
experiment, when the entities were too far from the Agent, their influence on the
Agent were considered too low to be able to distinguish which rules are the good
ones, since every rule would generate a small vector, because of the high value of
the common denominator (square of the distance between the Agent and the other
entity).
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6.6 Summary

We have found a way to describe the behaviour of a simulated duck as a set of
rules, by creating the TemplateRSP. However, it quickly appeared that a simulated
duck had a too complex behaviour to be learnt by our system. Indeed, our Learning
Classifier System encountered difficulties to learn a behaviour programmed as a set
of several rules. It is believed that most of the difficulties came from the the research
question we chose: since we assumed that the system could only observe the resultant
movement of the agent, without knowing the details (ie. each vector), a complex
behaviour (several rules) generates interferences during the learning process.

Our problem was not to learn a function f : x 7→ y, where x is a situation and
y is the correct action. Since our agents were reacting to several situations at the
same time (each entity around the agent generates a situation), several rules were
activated at the same time and the LCS had difficulties to reward only the good
ones.

We decided to simplify the problem, considering only three entities and a simpler
behaviour (one generic rule), in order to avoid those problems. We designed several
improvements to our system, and managed to get good results at the end, for the
simpler problem.
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Chapter 7

Conclusion

In this chapter a summary of the project is given, and we provide some suggestions
for further research.

7.1 Overview of the Project

After having studied the RSP project and the LCS literature, we decided to try
to implement some learning in a Multi-Agent system. The idea was to learn the
behaviours of autonomous agents, whose ”mind” is unknown to the system.

We reached our first objective by building a simulator using the Object-Oriented
Paradigm, and we added to the simulator a Learning System. We found a way to
describe a simulated duck’s behaviour as a set of rules (second objective) and a lot of
experiments were run (third objective). However, we encountered intrinsic difficulties
for the learning process, due to the complexity of the problem we chose, and the way
we described the behaviours. Following our methodology, we simplified the problem
to obtain better results.

At the end, the system managed to learn a simple behaviour in a world consisting
of three entities.

7.2 A Last Learning Agent

There is a last Learning Agent that we didn’t describe throughout the thesis: the
author. Building the simulator and the LCS was a very good training to Object-
Oriented paradigm, and we enhanced our knowledge of Design Patterns.

The Artificial Intelligence concepts we used throughout this thesis went beyond
what was learnt from the courses Intelligent Systems I & II and this was very chal-
lenging. Indeed, we presented in this dissertation the main steps which improved
the Learning System, but we had to do much more experiments to obtain those re-
sults. We tried to apply Wilson’s XCS [Butz and Wilson, 2001] but this eXtended
Classifier System did not work at the beginning. Since its mechanisms are much
more complex than a simple ZCS, it was very difficult to understand why it was not
working, so we decided instead to adapt the ZCS. However, the ZCS is not the best
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Learning Classifier System around now, and it is believed that some further research
(see next section) using a more advanced LCS might get better results. Neverthe-
less we needed to start from the basics of the Learning Classifier System theory to
understand the mechanisms, and this project was very interesting in that respect.

7.3 Further Research

Questions abound.
J.H. Holland in [Holland, 1986], p. 622.

It appeared that even the behaviour of a simulated duck was too difficult to be
learnt by our system, but we believe that the Learning Classifier System paradigm
can be a good approach to learn the behaviour of autonomous agents. We provide
below some suggestions to continue our work.

If an agent has a complex behaviour (ie. more than one rule), the learning
becomes difficult as soon as there are several entities involved, because of the problem
of rule interference. It might be a good idea to try to avoid this problem by defining
the behaviour in such a way that only one rule is active at a given time. Although the
search space might become bigger, because more information should be inside one
rule, the learning process should work better since the rewards would be distributed
more accurately.

Another way to improve the results would be to improve the Learning Classifier
System. We did not use the advanced features of the recent studies, and it might
be interesting to try them. Several improvements to the standard LCS are provided
in Dorigo’s ICS and Alecsys [Dorigo and Colombetti, 1994]. A new kind of LCS,
the Anticipatory Learning Classifier System (ALCS) [Butz et al., 2003], might also
be useful in our context. In an ALCS, classifiers have a third component [Effect]
so that the system can record the effect of a classifier; this allows planning to be
introduced in the system.

Finally further research could also be done with practical applications in mind.
By studying the abilities of some basic real robots (such as an automatic vacuum-
cleaner), it could be possible to try real-world applications, where a more ”advanced”
robot is learning the behaviour of the basic robots in order to avoid collisions, for
example.

To conclude, the task of learning the behaviour of autonomous agent might seem
quite complicated, since by assumption we have no idea about the possibilities and
the level of intelligence of the external agents. However we believe that it is important
to explore this problem, if we are to build really autonomous robots, dealing with
unknown environment including unknown agents in this environment. We hope that
the system we built and the conclusions we drew from our experiments will be useful
for further research on this problem.
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Appendix A

More procedures for our LCS

We give below some common algorithms for a Learning Classifier System; since most
of them can be found in the literature (see for example [Butz and Wilson, 2001]),
we put them only in Appendix to give a comprehensive description of our LCS. We
made significant modifications to the classic Apportionment of Credit System
(the way strengths are updated), they are described in section A.3.

A.1 Generate match set

Procedure 6 details how the Match Set is generated. This procedure has three sub-
procedures: Does match (procedure 7) which tells whether or not a classifier’s
condition matches the situation given by dj, Generate covering classifier
(procedure 8) which creates a new classifier when Match Set is too small and Add
classifier clc while maintaining size (described below).

Procedure 6 Generate match set from [P ] satisfying dj returns [M ]

1: [M ]← [ ] {empty match set}
2: for each classifier cl in [P ] do
3: if Does match classifier cl for definition dj then
4: [M ]← [M ] ∪ {cl}
5: end if
6: end for
7: while number of different actions in [M ] < minNbActionsForMatchSet do
8: clc ← Generate covering classifier considering [M ] for dj

9: Add classifier clc while maintaining size in [P ]
10: [M ]← [M ] ∪ {clc}
11: end while
12: return [M ]

The procedure Does match is straightforward. Every bit of the [Condition]
part of the classifier is checked: if this bit is # (”either 0 or 1”), then it matches,
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otherwise we need to check that the bit is the same than the corresponding one in
the situation dj (information given by the detectors).

Procedure 7 Does match classifier cl for definition dj returns boolean

1: for each attribute x in cl.C do
2: if (x 6= # and x 6= the corresponding attribute in dj) then
3: return false

4: end if
5: end for
6: return true

The procedure Generate covering classifier creates a new classifier with
a condition part which matches the situation dj (with some # with a probability
proba#) and a random action chosen among the ones that don’t exist already in [M ]
(in order to explore the search space, the system needs to test different action to find
which one can get the maximum payoff).

Procedure 8 Generate covering classifier considering [M ] (and [P ]) for
definition dj returns cl

1: create new classifier cl
2: for each attribute x in cl.C do
3: if RandomNumber[0, 1) < proba# then
4: x← #

5: else
6: x← the corresponding attribute in dj

7: end if
8: end for
9: cl.A← random action not already present in [M ]

10: cl.s← average strength in the population [P ]
11: return cl

We don’t give the detail of the procedure Add classifier clc while maintain-
ing size , which simply ensures that the size of [P ] doesn’t exceed the maximum
size chosen for the population. If it does, then a classifier is selected for deletion,
using an inverse Roulette Wheel (see procedure 10 for a normal Roulette Wheel),
ie. giving more chances to be deleted to the weakest classifiers.

A.2 Generate action set

We generate the action set (procedure 9) by using a Roulette Wheel. The Roulette
Wheel is given in the sub-procedure 10, Select Classifier using RW.

The Roulette Wheel works as follows: a random number between 0 and 1 is
chosen, and the classifier returned is the one which has the corresponding ”slot” in
the Roulette. Each classifier has a slot sized according to its strength divided by the
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Procedure 9 Generate action set of size sizeActionSet from [M ] returns
[Ai]

1: if size of [M ] ≤ sizeActionSet then
2: return [M ]
3: else
4: [Ai]← [ ] {initially empty}
5: for i = 0 to sizeActionSet do
6: cl ← Select Classifier using RW from [M ]
7: while cl ∈ [Ai] do
8: cl ← Select Classifier using RW from [M ]
9: end while

10: [Ai]← [Ai] ∪ {cl}
11: end for
12: end if
13: return [Ai]

sum of all the strengths (to obtain a slot which is a part of the interval [0, 1]). Thus
the classifiers with the highest strengths will have higher probabilities to be selected.

Procedure 10 Select Classifier using RW from set [S] returns cl

1: currentPosition ← 0
2: sumStrengths ←

∑
cl∈[S] cl.s {sum of all the strengths in the set}

3: choicePoint ← RandomNumber[0,1)
4: for each classifier cl in [S] do
5: currentPosition ← currentPosition + (cl.s/sumStrengths)
6: if currentPosition > choicePoint then
7: return cl
8: end if
9: end for

A.3 Updating the strengths

The procedure 11 updates the strengths of the selected classifiers considering the
reward the system got from the environment.

It also considers the maximum reward that can be obtained from the environment,
because the strength of a rule should not be decreased if it gets the maximum reward.
However, in the method described page 43, each rule looses a portion β of its strength
(giving it to a common bucket) before getting the reward. This ensure that a rule is
weakened when it does not get rewarded. But if the strength of a rule is too high, it
might loose more than it can get, even with the biggest reward. Thus a ”good rule”
(which got the highest reward) might still be punished. In order to avoid this effect,
it was decided that a rule cannot give more to the bucket than it can possibly get
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with the highest reward. The old method was:

1. each classifier cl in the Action Set [A] with a strength cl.s gives a portion of
its strength (β × cl.s with β < 1) to the common bucket.

2. Then each classifier receives its share of the reward (ie. r
|[A]|

, where |[A]| is

the number of classifiers in [A]) plus its share of a portion γ of the bucket (ie.
γ×bucket

|[A]|
).

Thus if we call rmax the maximum reward the environment can give to the system,
we should ensure that a classifier cl should not give more than it can get, ie.:

β × cl.s ≤
rmax + γ × bucket

|[A]|
(A.1)

Now if we consider that each classifier in [A] had the same strength, it gave the same
amount to the bucket and we obtain:

β × cl.s ≤
rmax + γ × |[A]| × β × cl.s

|[A]|

β × cl.s ≤
rmax

|[A]|
+ γ × β × cl.s

(1− γ)× β × cl.s ≤
rmax

|[A]|

β × cl.s ≤
rmax

(1− γ)× |[A]|
(A.2)

The procedure Update (procedure 11) takes this into account to compute the
share a classifier should give to the bucket.

Procedure 11 Update [A] considering the reward r and rmax

1: bucket ← 0
2: for each classifier cl in [A] do
3: giveToBucket ← β × cl.s
4: if giveToBucket > rmax / ((1− γ)× |[A]|) then
5: giveToBucket ← rmax / [(1− γ)× |[A]|]
6: end if
7: bucket ← bucket + giveToBucket

8: cl.s← cl.s − giveToBucket

9: end for
10: finalRewardForEach ← (r + γ×bucket) / |[A]| {|[A]| is the size of [A]}
11: for each classifier cl in [A] do
12: cl.s← cl.s + finalRewardForEach

13: end for

It is interesting to notice that we can calculate the maximum strength a classi-
fier can have, if we know rmax. In our problem, we used rmax = 2, 000 (cf procedure 4
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page 43). In order to get the maximum reward, the classifier should be the only one
to be activated (so that it does not share the reward). When a classifier gives ex-
actly to the bucket the maximum reward it can get, the strength of the classifier has
reached the limit (it cannot increase any more). Thus we have:

β × cl.smax = rmax

(1−γ)×|[A]|
(A.3)

Hence, if the classifier can be alone in the Action Set [A] (ie. |[A]| = 1):

cl.smax =
rmax

β × (1− γ)
(A.4)

With the parameters we chose (β = 0.1, γ = 0.6, cf Appendix D), the limit for the
strength of a classifier is:

cl.smax =
2, 000

0.1× (1− 0.6)
=

2, 000

0.04
= 50, 000. (A.5)
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Instructions to test the program

The program is available from the following web pages:

• http://helicos.com.free.fr/mscproject/

• (mirror) http://benoit.helicos.com/mscproject/

On these pages a jar file (Java archive) of the program is provided, and there is
an access to the documentation.

The jar file should be downloaded and tried from a local directory, because it
creates data files in order to plot the results.

A Java Run-Time Environment (JRE) should be installed in order to run the
program. The program has been successfully tested with a version 1.4.2 of the JRE,
but it should work as well with more recent versions of the JRE.

Once downloaded, the program can be run usually by double-clicking on the jar
file or by the command: java -jar simuLCS.jar.

In order to generate the graphs, gnuplot1 is required. Once the data file (exten-
sion .dat) has been created, a command file for gnuplot (extension .gp) is created
as well with the same base name. Run gnuplot myfile.gp (where myfile is the
base name chosen) to obtain a Postscript graph (myfile.ps).

1Freely available at http://www.gnuplot.info.
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Appendix C

More class diagrams

Figure C.1: The main features of the Simulation class.
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Figure C.2: The Entity hierarchy.

Figure C.3: ClassifierSet and Classifier and our ZCS implementation.
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Figure C.4: The Template class and an implementation for the RSP.
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Figure C.5: The top of the tree structure for the GUI.
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Appendix D

Parameters

We give below the parameters we used for the experiments described in Chapter 6. It
is a well-known problem in Evolutionary Computation that a Genetic-Based Machine
Learning system might perform much differently depending on those parameters. We
ran several experiments in order to find the best parameters, but we had to face other
problems, so we didn’t focus so much on tuning the parameters.

Name Value Meaning See
maxPopSize 40 Max. number of classifiers in the population p 80
β 0.1 Portion of strength a classifier should give to

the bucket

proc. 11 p 82

γ 0.6 Portion of the bucket redistributed proc. 11 p 82
θGA 100 GAperiodicity proc. 2 p 41
pX 0.8 Probability of applying the crossover opera-

tor to a pair of classifiers

section 4.3.3
p 43

pM 0.1 Probability of applying the mutation opera-

tor to one bit of a classifier

section 4.3.3
p 43

p# 0.3 Probability of using a ”don’t care” symbol

for a bit of a classifier when using covering

proc. 8 p 80
(proba#)

strengthIni 5,000 The initial strength value for a new classifier p 63
maxError 10 Maximum error to get a reward proc. 4 p 43
sizeActionSet 2†, 1‡ The number of classifiers to activate in order

to calculate the response for one entity

p 42

minNbActions
ForMatchSet

4†, 0‡ Miminum number of different actions to have

in a Match Set; below this number, covering

occurs.

proc. 6 p 79

Table D.1: Parameters used for the Genetic Algorithm and the LCS. Key: †: for Tem-

plateRSP, ‡: for TemplateRSPVerySimple.
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Appendix E

Outputs and screenshots

This appendix contains some screenshots of the program during the experiments and
some results obtained. Figure E.1 shows the Visibility Circle described in Experiment
3. Figure E.2 shows how the user can see that ”good” rules are appearing in the
population of the LCS (expected behaviour).

Figure E.1: Screenshot with the Visibility Circle activated for Agent 2. Only Agent
Ra can affect the movement of Agent 2 at this time step.
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Figure E.2: Partial Screenshot. The number of ”good” rules in the expected behav-
iour can be seen during the experiment (highlighted + mention ”-EXACT-”).

Table E.1 presents the rules in the population of the LCS after 30,000 time steps
in Experiment 1 (ie. with TemplateRSP). Table E.2 presents the rules after 30,000 in
Experiment 2 (ie. with TemplateRSPVerySimple, without the Visibility Circle). The
rules for Experiment 3 are given in Table 6.4 page 75.
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Real behaviour
#1 → 1010110 [Avoiding Danger]

Expected behaviour (rules inside the LCS)
1: ## → 1001111 Str.:24708.082 21: #1 → 0010111 Str.:23795.25
2: ## → 0011111 Str.:24696.562 22: #1 → 1100111 Str.:23783.709
3: ## → 0011111 Str.:24670.314 23: #1 → 0111111 Str.:23780.504
4: #1 → 0100111 Str.:24489.498 24: ## → 0100001 Str.:23756.434
5: #1 → 1100101 Str.:24335.17 25: ## → 0100111 Str.:23744.793
6: ## → 0101010 Str.:24328.95 26: #1 → 0101001 Str.:23701.146
7: ## → 0000000 Str.:24323.71 27: ## → 1011111 Str.:23647.383
8: #1 → 1101001 Str.:24270.807 28: #1 → 0110111 Str.:23636.826
9: ## → 0100001 Str.:24250.121 29: #1 → 1100001 Str.:21047.639

10: #1 → 0100111 Str.:24225.47 30: 0# → 0011111 Str.:19830.535
11: #1 → 0110111 Str.:24167.277 31: ## → 0110000 Str.:19126.08
12: ## → 0100101 Str.:24149.822 32: 01 → 0100111 Str.:18694.133
13: #1 → 1101101 Str.:24146.357 33: 0# → 0100000 Str.:17208.88
14: #1 → 1011111 Str.:24141.46 34: 1# → 0111111 Str.:16210.034
15: ## → 0100000 Str.:24102.63 35: ## → 0111111 Str.:15862.073
16: #1 → 0101111 Str.:24055.652 36: ## → 0000101 Str.:15840.572
17: #1 → 0100001 Str.:24049.596 37: ## → 0100000 Str.:13696.718
18: ## → 1001111 Str.:24032.27 38: 01 → 1010111 Str.:11897.625
19: #1 → 0100101 Str.:24022.95 39: #0 → 0000010 Str.:11633.008
20: #1 → 0100101 Str.:23823.195 40: #1 → 1111001 Str.:10523.819

Table E.1: Experiment 1 (TemplateRSP); Expected behaviour learnt for Agent 2 after
30,000 time steps, compared with the real behaviour. [”Str.” means Strength]
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Real behaviour
#1 → 111 [Avoiding Danger]

Expected behaviour (rules inside the LCS)
1: ## → 100 Str.:26176.555 21: #1 → 001 Str.:23705.43
2: ## → 100 Str.:25725.127 22: #1 → 110 Str.:23652.434
3: ## → 111 Str.:25459.479 23: #1 → 001 Str.:23615.555
4: ## → 101 Str.:25193.545 24: ## → 111 Str.:23580.506
5: #1 → 010 Str.:24858.32 25: #1 → 101 Str.:22974.986
6: #1 → 001 Str.:24764.258 26: 0# → 100 Str.:22839.021
7: #1 → 101 Str.:24585.984 27: 01 → 101 Str.:22737.582
8: ## → 100 Str.:24493.748 28: 01 → 011 Str.:22663.19
9: ## → 100 Str.:24339.602 29: 1# → 010 Str.:21984.979

10: #1 → 101 Str.:24326.63 30: ## → 001 Str.:21824.307
11: 1# → 000 Str.:24191.344 31: ## → 100 Str.:21726.928
12: ## → 010 Str.:24166.566 32: ## → 111 Str.:20732.775
13: ## → 010 Str.:24150.863 33: #1 → 111 Str.:20627.117
14: ## → 010 Str.:24025.504 34: #1 → 101 Str.:20387.291
15: #1 → 101 Str.:23997.0 35: #1 → 101 Str.:20037.656
16: #1 → 001 Str.:23955.957 36: #1 → 001 Str.:17892.3
17: 11 → 001 Str.:23948.387 37: #1 → 110 Str.:14858.605
18: ## → 111 Str.:23914.191 38: 01 → 110 Str.:12705.314
19: 11 → 101 Str.:23882.092 39: 1# → 010 Str.:11537.886
20: 1# → 100 Str.:23845.623 40: ## → 010 Str.:11537.886

Table E.2: Experiment 2 (TemplateRSPVerySimple without Visibility Circle); Ex-
pected behaviour learnt for Agent 2 after 30,000 time steps, compared with the real
behaviour.
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